forked from marmilicious/FastLED_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmirrored_Fire2012_on_one_strip.ino
147 lines (126 loc) · 5.1 KB
/
mirrored_Fire2012_on_one_strip.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
//***************************************************************
//
// ***NOTE***:
// There is an updated version of this now which as the option
// to go from center outward or from ends inward toward center.
// https://github.com/marmilicious/FastLED_examples/blob/master/mirrored_Fire2012.ino
//
//
// Example of running FastLED's Fire2012 example on the first
// half of a strip, and mirroring that to the the second half.
//
// The first thing I did was find & replace NUM_LEDS with NUM_LEDS/2
// in all parts of the Fire2012 function.
//
// Then I added the "mirror2ndHalf" function that always gets run
// right before FastLED.show()
//
// Marc Miller, Feb 2017
//***************************************************************
#include "FastLED.h"
#define DATA_PIN 11
#define CLK_PIN 13
#define LED_TYPE LPD8806
#define COLOR_ORDER GRB
#define NUM_LEDS 32 // Total number of pixels in strip
#define BRIGHTNESS 100
CRGB leds[NUM_LEDS];
#define FRAMES_PER_SECOND 100
bool gReverseDirection = false;
//---------------------------------------------------------------
void setup() {
Serial.begin(115200); // Allows serial monitor output (check baud rate)
delay(3000); // 3 second delay for recovery
//FastLED.addLeds<LED_TYPE,DATA_PIN,COLOR_ORDER>(leds, NUM_LEDS).setCorrection(TypicalLEDStrip);
FastLED.addLeds<LED_TYPE,DATA_PIN,CLK_PIN,COLOR_ORDER>(leds, NUM_LEDS).setCorrection(TypicalLEDStrip);
FastLED.setBrightness(BRIGHTNESS);
FastLED.clear();
Serial.println("Setup done. \n");
}
//---------------------------------------------------------------
void loop()
{
// Add entropy to random number generator; we use a lot of it.
// random16_add_entropy( random());
Fire2012(); // run simulation frame
mirror2ndHalf(); // copy and mirror first half of strip to second half
FastLED.show(); // display this frame
FastLED.delay(1000 / FRAMES_PER_SECOND);
}
//---------------------------------------------------------------
// Fire2012 by Mark Kriegsman, July 2012
// as part of "Five Elements" shown here: http://youtu.be/knWiGsmgycY
////
// This basic one-dimensional 'fire' simulation works roughly as follows:
// There's a underlying array of 'heat' cells, that model the temperature
// at each point along the line. Every cycle through the simulation,
// four steps are performed:
// 1) All cells cool down a little bit, losing heat to the air
// 2) The heat from each cell drifts 'up' and diffuses a little
// 3) Sometimes randomly new 'sparks' of heat are added at the bottom
// 4) The heat from each cell is rendered as a color into the leds array
// The heat-to-color mapping uses a black-body radiation approximation.
//
// Temperature is in arbitrary units from 0 (cold black) to 255 (white hot).
//
// This simulation scales it self a bit depending on NUM_LEDS; it should look
// "OK" on anywhere from 20 to 100 LEDs without too much tweaking.
//
// I recommend running this simulation at anywhere from 30-100 frames per second,
// meaning an interframe delay of about 10-35 milliseconds.
//
// Looks best on a high-density LED setup (60+ pixels/meter).
//
//
// There are two main parameters you can play with to control the look and
// feel of your fire: COOLING (used in step 1 above), and SPARKING (used
// in step 3 above).
//
// COOLING: How much does the air cool as it rises?
// Less cooling = taller flames. More cooling = shorter flames.
// Default 50, suggested range 20-100
#define COOLING 90
// SPARKING: What chance (out of 255) is there that a new spark will be lit?
// Higher chance = more roaring fire. Lower chance = more flickery fire.
// Default 120, suggested range 50-200.
#define SPARKING 50
//---------------------------------------------------------------
// ***** NOTE: NUM_LEDS was replaced with NUM_LEDS/2 anywhere it was found
// below. This makes the fire only run on the first half of the strip. *****
//---------------------------------------------------------------
void Fire2012()
{
// Array of temperature readings at each simulation cell
static byte heat[NUM_LEDS/2];
// Step 1. Cool down every cell a little
for( int i = 0; i < NUM_LEDS/2; i++) {
heat[i] = qsub8( heat[i], random8(0, ((COOLING * 10) / NUM_LEDS/2) + 2));
}
// Step 2. Heat from each cell drifts 'up' and diffuses a little
for( int k= NUM_LEDS/2 - 1; k >= 2; k--) {
heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2] ) / 3;
}
// Step 3. Randomly ignite new 'sparks' of heat near the bottom
if( random8() < SPARKING ) {
int y = random8(7);
heat[y] = qadd8( heat[y], random8(160,255) );
}
// Step 4. Map from heat cells to LED colors
for( int j = 0; j < NUM_LEDS/2; j++) {
CRGB color = HeatColor( heat[j]);
int pixelnumber;
if( gReverseDirection ) {
pixelnumber = (NUM_LEDS/2-1) - j;
} else {
pixelnumber = j;
}
leds[pixelnumber] = color;
}
}
//---------------------------------------------------------------
void mirror2ndHalf() {
// copy in reverse order first half of strip to second half
for (uint8_t i = 0; i < NUM_LEDS/2; i++) {
leds[NUM_LEDS-1-i] = leds[i];
}
}