forked from timctho/convolutional-pose-machines-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_cpm_body.py
499 lines (425 loc) · 24.8 KB
/
demo_cpm_body.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import numpy as np
from utils import cpm_utils
import cv2
import time
import math
import sys
import os
import imageio
import tensorflow as tf
from models.nets import cpm_body_slim
"""Parameters
"""
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('DEMO_TYPE',
# default_value='test_imgs/roger.png',
default_value='test_imgs/single_gym.mp4',
# default_value='SINGLE',
docstring='MULTI: show multiple stage,'
'SINGLE: only last stage,'
'HM: show last stage heatmap,'
'paths to .jpg or .png image'
'paths to .avi or .flv or .mp4 video')
tf.app.flags.DEFINE_string('model_path',
default_value='models/weights/cpm_body.pkl',
docstring='Your model')
tf.app.flags.DEFINE_integer('input_size',
default_value=368,
docstring='Input image size')
tf.app.flags.DEFINE_integer('hmap_size',
default_value=46,
docstring='Output heatmap size')
tf.app.flags.DEFINE_integer('cmap_radius',
default_value=21,
docstring='Center map gaussian variance')
tf.app.flags.DEFINE_integer('joints',
default_value=14,
docstring='Number of joints')
tf.app.flags.DEFINE_integer('stages',
default_value=6,
docstring='How many CPM stages')
tf.app.flags.DEFINE_integer('cam_num',
default_value=0,
docstring='Webcam device number')
tf.app.flags.DEFINE_bool('KALMAN_ON',
default_value=False,
docstring='enalbe kalman filter')
tf.app.flags.DEFINE_integer('kalman_noise',
default_value=3e-2,
docstring='Kalman filter noise value')
tf.app.flags.DEFINE_string('color_channel',
default_value='RGB',
docstring='')
# Set color for each finger
joint_color_code = [[139, 53, 255],
[0, 56, 255],
[43, 140, 237],
[37, 168, 36],
[147, 147, 0],
[70, 17, 145]]
limbs = [[0, 1],
[2, 3],
[3, 4],
[5, 6],
[6, 7],
[8, 9],
[9, 10],
[11, 12],
[12, 13]]
if sys.version_info.major == 3:
PYTHON_VERSION = 3
else:
PYTHON_VERSION = 2
def mgray(test_img_resize, test_img):
test_img_resize = np.dot(test_img_resize[..., :3], [0.299, 0.587, 0.114]).reshape(
(FLAGS.input_size, FLAGS.input_size, 1))
cv2.imshow('color', test_img.astype(np.uint8))
cv2.imshow('gray', test_img_resize.astype(np.uint8))
cv2.waitKey(1)
return test_img_resize
def main(argv):
tf_device = '/gpu:0'
with tf.device(tf_device):
"""Build graph
"""
if FLAGS.color_channel == 'RGB':
input_data = tf.placeholder(dtype=tf.float32,
shape=[None, FLAGS.input_size, FLAGS.input_size, 3],
name='input_image')
else:
input_data = tf.placeholder(dtype=tf.float32,
shape=[None, FLAGS.input_size, FLAGS.input_size, 1],
name='input_image')
center_map = tf.placeholder(dtype=tf.float32,
shape=[None, FLAGS.input_size, FLAGS.input_size, 1],
name='center_map')
model = cpm_body_slim.CPM_Model(FLAGS.stages, FLAGS.joints + 1)
model.build_model(input_data, center_map, 1)
saver = tf.train.Saver()
"""Create session and restore weights
"""
sess = tf.Session()
sess.run(tf.global_variables_initializer())
if FLAGS.model_path.endswith('pkl'):
model.load_weights_from_file(FLAGS.model_path, sess, False)
else:
saver.restore(sess, FLAGS.model_path)
test_center_map = cpm_utils.gaussian_img(FLAGS.input_size,
FLAGS.input_size,
FLAGS.input_size / 2,
FLAGS.input_size / 2,
FLAGS.cmap_radius)
test_center_map = np.reshape(test_center_map, [1, FLAGS.input_size,
FLAGS.input_size, 1])
# Check weights
for variable in tf.trainable_variables():
with tf.variable_scope('', reuse=True):
var = tf.get_variable(variable.name.split(':0')[0])
print(variable.name, np.mean(sess.run(var)))
# Create kalman filters
if FLAGS.KALMAN_ON:
kalman_filter_array = [cv2.KalmanFilter(4, 2) for _ in range(FLAGS.joints)]
for _, joint_kalman_filter in enumerate(kalman_filter_array):
joint_kalman_filter.transitionMatrix = np.array([[1, 0, 1, 0],
[0, 1, 0, 1],
[0, 0, 1, 0],
[0, 0, 0, 1]],
np.float32)
joint_kalman_filter.measurementMatrix = np.array([[1, 0, 0, 0],
[0, 1, 0, 0]],
np.float32)
joint_kalman_filter.processNoiseCov = np.array([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]],
np.float32) * FLAGS.kalman_noise
else:
kalman_filter_array = None
# read in video / flow frames
if FLAGS.DEMO_TYPE.endswith(('avi', 'flv', 'mp4')):
# OpenCV can only read in '.avi' files
cam = imageio.get_reader(FLAGS.DEMO_TYPE)
else:
cam = cv2.VideoCapture(FLAGS.cam_num)
# iamge processing
with tf.device(tf_device):
if FLAGS.DEMO_TYPE.endswith(('avi', 'flv', 'mp4')):
ori_fps = cam.get_meta_data()['fps']
print('This video fps is %f' % ori_fps)
video_length = cam.get_length()
writer_path = os.path.join('results', os.path.basename(FLAGS.DEMO_TYPE))
# !! OpenCV can only write in .avi
cv_writer = cv2.VideoWriter(writer_path + '.avi',
# cv2.cv.CV_FOURCC('M', 'J', 'P', 'G'),
cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'),
ori_fps,
(FLAGS.input_size, FLAGS.input_size))
# imageio_writer = imageio.get_writer(writer_path, fps=ori_fps)
try:
for it, im in enumerate(cam):
test_img_t = time.time()
test_img = cpm_utils.read_image(im, [], FLAGS.input_size, 'VIDEO')
test_img_resize = cv2.resize(test_img, (FLAGS.input_size, FLAGS.input_size))
print('img read time %f' % (time.time() - test_img_t))
if FLAGS.color_channel == 'GRAY':
test_img_resize = mgray(test_img_resize, test_img)
test_img_input = test_img_resize / 256.0 - 0.5
test_img_input = np.expand_dims(test_img_input, axis=0)
# Inference
fps_t = time.time()
predict_heatmap, stage_heatmap_np = sess.run([model.current_heatmap,
model.stage_heatmap,
],
feed_dict={'input_image:0': test_img_input,
'center_map:0': test_center_map})
# Show visualized image
demo_img = visualize_result(test_img, FLAGS, stage_heatmap_np, kalman_filter_array)
cv2.imshow('demo_img', demo_img.astype(np.uint8))
if (cv2.waitKey(1) == ord('q')): break
print('fps: %.2f' % (1 / (time.time() - fps_t)))
cv_writer.write(demo_img.astype(np.uint8))
# imageio_writer.append_data(demo_img[:, :, 1])
except KeyboardInterrupt:
print('Stopped! {}/{} frames captured!'.format(it, video_length))
finally:
cv_writer.release()
# imageio_writer.close()
else:
while True:
test_img_t = time.time()
if FLAGS.DEMO_TYPE.endswith(('png', 'jpg')):
test_img = cpm_utils.read_image(FLAGS.DEMO_TYPE, [], FLAGS.input_size, 'IMAGE')
else:
test_img = cpm_utils.read_image([], cam, FLAGS.input_size, 'WEBCAM')
test_img_resize = cv2.resize(test_img, (FLAGS.input_size, FLAGS.input_size))
print('img read time %f' % (time.time() - test_img_t))
if FLAGS.color_channel == 'GRAY':
test_img_resize = mgray(test_img_resize, test_img)
test_img_input = test_img_resize / 256.0 - 0.5
test_img_input = np.expand_dims(test_img_input, axis=0)
if FLAGS.DEMO_TYPE.endswith(('png', 'jpg')):
# Inference
fps_t = time.time()
predict_heatmap, stage_heatmap_np = sess.run([model.current_heatmap,
model.stage_heatmap, ],
feed_dict={'input_image:0': test_img_input,
'center_map:0': test_center_map})
# Show visualized image
demo_img = visualize_result(test_img, FLAGS, stage_heatmap_np, kalman_filter_array)
cv2.imshow('demo_img', demo_img.astype(np.uint8))
if cv2.waitKey(0) == ord('q'): break
print('fps: %.2f' % (1 / (time.time() - fps_t)))
elif FLAGS.DEMO_TYPE == 'MULTI':
# Inference
fps_t = time.time()
predict_heatmap, stage_heatmap_np = sess.run([model.current_heatmap,
model.stage_heatmap,
],
feed_dict={'input_image:0': test_img_input,
'center_map:0': test_center_map})
# Show visualized image
demo_img = visualize_result(test_img, FLAGS, stage_heatmap_np, kalman_filter_array)
cv2.imshow('demo_img', demo_img.astype(np.uint8))
if cv2.waitKey(1) == ord('q'): break
print('fps: %.2f' % (1 / (time.time() - fps_t)))
elif FLAGS.DEMO_TYPE == 'SINGLE':
# Inference
fps_t = time.time()
stage_heatmap_np = sess.run([model.stage_heatmap[5]],
feed_dict={'input_image:0': test_img_input,
'center_map:0': test_center_map})
# Show visualized image
demo_img = visualize_result(test_img, FLAGS, stage_heatmap_np, kalman_filter_array)
cv2.imshow('current heatmap', (demo_img).astype(np.uint8))
if cv2.waitKey(1) == ord('q'): break
print('fps: %.2f' % (1 / (time.time() - fps_t)))
elif FLAGS.DEMO_TYPE == 'HM':
# Inference
fps_t = time.time()
stage_heatmap_np = sess.run([model.stage_heatmap[FLAGS.stages - 1]],
feed_dict={'input_image:0': test_img_input,
'center_map:0': test_center_map})
print('fps: %.2f' % (1 / (time.time() - fps_t)))
# demo_stage_heatmap = stage_heatmap_np[len(stage_heatmap_np) - 1][0, :, :, 0:FLAGS.joints].reshape(
# (FLAGS.hmap_size, FLAGS.hmap_size, FLAGS.joints))
demo_stage_heatmap = stage_heatmap_np[-1][0, :, :, 0:FLAGS.joints].reshape(
(FLAGS.hmap_size, FLAGS.hmap_size, FLAGS.joints))
demo_stage_heatmap = cv2.resize(demo_stage_heatmap, (FLAGS.input_size, FLAGS.input_size))
vertical_imgs = []
tmp_img = None
joint_coord_set = np.zeros((FLAGS.joints, 2))
for joint_num in range(FLAGS.joints):
# Concat until 4 img
if (joint_num % 4) == 0 and joint_num != 0:
vertical_imgs.append(tmp_img)
tmp_img = None
demo_stage_heatmap[:, :, joint_num] *= (255 / np.max(demo_stage_heatmap[:, :, joint_num]))
# Plot color joints
if np.min(demo_stage_heatmap[:, :, joint_num]) > -50:
joint_coord = np.unravel_index(np.argmax(demo_stage_heatmap[:, :, joint_num]),
(FLAGS.input_size, FLAGS.input_size))
joint_coord_set[joint_num, :] = joint_coord
color_code_num = (joint_num // 4)
if joint_num in [0, 4, 8, 12, 16]:
if PYTHON_VERSION == 3:
joint_color = list(
map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num]))
else:
joint_color = map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num])
cv2.circle(test_img, center=(joint_coord[1], joint_coord[0]), radius=3, color=joint_color,
thickness=-1)
else:
if PYTHON_VERSION == 3:
joint_color = list(
map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num]))
else:
joint_color = map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num])
cv2.circle(test_img, center=(joint_coord[1], joint_coord[0]), radius=3, color=joint_color,
thickness=-1)
# Put text
tmp = demo_stage_heatmap[:, :, joint_num].astype(np.uint8)
tmp = cv2.putText(tmp, 'Min:' + str(np.min(demo_stage_heatmap[:, :, joint_num])),
org=(5, 20), fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.3, color=150)
tmp = cv2.putText(tmp, 'Mean:' + str(np.mean(demo_stage_heatmap[:, :, joint_num])),
org=(5, 30), fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.3, color=150)
tmp_img = np.concatenate((tmp_img, tmp), axis=0) \
if tmp_img is not None else tmp
# Plot limbs
for limb_num in range(len(limbs)):
if np.min(demo_stage_heatmap[:, :, limbs[limb_num][0]]) > -2000 and np.min(
demo_stage_heatmap[:, :, limbs[limb_num][1]]) > -2000:
x1 = joint_coord_set[limbs[limb_num][0], 0]
y1 = joint_coord_set[limbs[limb_num][0], 1]
x2 = joint_coord_set[limbs[limb_num][1], 0]
y2 = joint_coord_set[limbs[limb_num][1], 1]
length = ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
if length < 10000 and length > 5:
deg = math.degrees(math.atan2(x1 - x2, y1 - y2))
polygon = cv2.ellipse2Poly((int((y1 + y2) / 2), int((x1 + x2) / 2)),
(int(length / 2), 3),
int(deg),
0, 360, 1)
color_code_num = limb_num // 4
if PYTHON_VERSION == 3:
limb_color = list(
map(lambda x: x + 35 * (limb_num % 4), joint_color_code[color_code_num]))
else:
limb_color = map(lambda x: x + 35 * (limb_num % 4), joint_color_code[color_code_num])
cv2.fillConvexPoly(test_img, polygon, color=limb_color)
if tmp_img is not None:
tmp_img = np.lib.pad(tmp_img, ((0, vertical_imgs[0].shape[0] - tmp_img.shape[0]), (0, 0)),
'constant', constant_values=(0, 0))
vertical_imgs.append(tmp_img)
# Concat horizontally
output_img = None
for col in range(len(vertical_imgs)):
output_img = np.concatenate((output_img, vertical_imgs[col]), axis=1) if output_img is not None else \
vertical_imgs[col]
output_img = output_img.astype(np.uint8)
output_img = cv2.applyColorMap(output_img, cv2.COLORMAP_JET)
test_img = cv2.resize(test_img, (300, 300), cv2.INTER_LANCZOS4)
cv2.imshow('hm', output_img)
cv2.moveWindow('hm', 2000, 200)
cv2.imshow('rgb', test_img)
cv2.moveWindow('rgb', 2000, 750)
if cv2.waitKey(1) == ord('q'): break
def visualize_result(test_img, FLAGS, stage_heatmap_np, kalman_filter_array):
hm_t = time.time()
demo_stage_heatmaps = []
if FLAGS.DEMO_TYPE == 'MULTI':
for stage in range(len(stage_heatmap_np)):
demo_stage_heatmap = stage_heatmap_np[stage][0, :, :, 0:FLAGS.joints].reshape(
(FLAGS.hmap_size, FLAGS.hmap_size, FLAGS.joints))
demo_stage_heatmap = cv2.resize(demo_stage_heatmap, (test_img.shape[1], test_img.shape[0]))
demo_stage_heatmap = np.amax(demo_stage_heatmap, axis=2)
demo_stage_heatmap = np.reshape(demo_stage_heatmap, (test_img.shape[1], test_img.shape[0], 1))
demo_stage_heatmap = np.repeat(demo_stage_heatmap, 3, axis=2)
demo_stage_heatmap *= 255
demo_stage_heatmaps.append(demo_stage_heatmap)
# last_heatmap = stage_heatmap_np[len(stage_heatmap_np) - 1][0, :, :, 0:FLAGS.joints].reshape(
# (FLAGS.hmap_size, FLAGS.hmap_size, FLAGS.joints))
last_heatmap = stage_heatmap_np[-1][0, :, :, 0:FLAGS.joints].reshape(
(FLAGS.hmap_size, FLAGS.hmap_size, FLAGS.joints))
last_heatmap = cv2.resize(last_heatmap, (test_img.shape[1], test_img.shape[0]))
else:
# last_heatmap = stage_heatmap_np[len(stage_heatmap_np) - 1][0, :, :, 0:FLAGS.joints].reshape(
# (FLAGS.hmap_size, FLAGS.hmap_size, FLAGS.joints))
last_heatmap = stage_heatmap_np[-1][0, :, :, 0:FLAGS.joints].reshape(
(FLAGS.hmap_size, FLAGS.hmap_size, FLAGS.joints))
last_heatmap = cv2.resize(last_heatmap, (test_img.shape[1], test_img.shape[0]))
print('hm resize time %f' % (time.time() - hm_t))
joint_t = time.time()
joint_coord_set = np.zeros((FLAGS.joints, 2))
# Plot joint colors
if kalman_filter_array is not None:
for joint_num in range(FLAGS.joints):
joint_coord = np.unravel_index(np.argmax(last_heatmap[:, :, joint_num]),
(test_img.shape[0], test_img.shape[1]))
# add a dimension for kalman filter
joint_coord = np.array(joint_coord).reshape((2, 1)).astype(np.float32)
kalman_filter_array[joint_num].correct(joint_coord)
kalman_pred = kalman_filter_array[joint_num].predict()
joint_coord_set[joint_num, :] = np.array([kalman_pred[0], kalman_pred[1]]).reshape((2))
color_code_num = (joint_num // 4)
if joint_num in [0, 4, 8, 12, 16]:
if PYTHON_VERSION == 3:
joint_color = list(map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num]))
else:
joint_color = map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num])
cv2.circle(test_img, center=(joint_coord[1], joint_coord[0]), radius=3, color=joint_color, thickness=-1)
else:
if PYTHON_VERSION == 3:
joint_color = list(map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num]))
else:
joint_color = map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num])
cv2.circle(test_img, center=(joint_coord[1], joint_coord[0]), radius=3, color=joint_color, thickness=-1)
else:
for joint_num in range(FLAGS.joints):
joint_coord = np.unravel_index(np.argmax(last_heatmap[:, :, joint_num]),
(test_img.shape[0], test_img.shape[1]))
joint_coord_set[joint_num, :] = [joint_coord[0], joint_coord[1]]
color_code_num = (joint_num // 4)
if joint_num in [0, 4, 8, 12, 16]:
if PYTHON_VERSION == 3:
joint_color = list(map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num]))
else:
joint_color = map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num])
cv2.circle(test_img, center=(joint_coord[1], joint_coord[0]), radius=3, color=joint_color, thickness=-1)
else:
if PYTHON_VERSION == 3:
joint_color = list(map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num]))
else:
joint_color = map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num])
cv2.circle(test_img, center=(joint_coord[1], joint_coord[0]), radius=3, color=joint_color, thickness=-1)
print('plot joint time %f' % (time.time() - joint_t))
limb_t = time.time()
# Plot limb colors
for limb_num in range(len(limbs)):
x1 = joint_coord_set[limbs[limb_num][0], 0]
y1 = joint_coord_set[limbs[limb_num][0], 1]
x2 = joint_coord_set[limbs[limb_num][1], 0]
y2 = joint_coord_set[limbs[limb_num][1], 1]
length = ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
if length < 200 and length > 5:
deg = math.degrees(math.atan2(x1 - x2, y1 - y2))
polygon = cv2.ellipse2Poly((int((y1 + y2) / 2), int((x1 + x2) / 2)),
(int(length / 2), 6),
int(deg),
0, 360, 1)
color_code_num = limb_num // 4
if PYTHON_VERSION == 3:
limb_color = list(map(lambda x: x + 35 * (limb_num % 4), joint_color_code[color_code_num]))
else:
limb_color = map(lambda x: x + 35 * (limb_num % 4), joint_color_code[color_code_num])
cv2.fillConvexPoly(test_img, polygon, color=limb_color)
print('plot limb time %f' % (time.time() - limb_t))
if FLAGS.DEMO_TYPE == 'MULTI':
upper_img = np.concatenate((demo_stage_heatmaps[0], demo_stage_heatmaps[1], demo_stage_heatmaps[2]), axis=1)
lower_img = np.concatenate((demo_stage_heatmaps[3], demo_stage_heatmaps[len(stage_heatmap_np) - 1], test_img),
axis=1)
demo_img = np.concatenate((upper_img, lower_img), axis=0)
return demo_img
else:
return test_img
if __name__ == '__main__':
tf.app.run()