Hybrid Regularization Improves Diffusion-based Inverse Problem Solving (ICLR 2025) Paper
This is the README file for the implementation of Hybrid Regularization Improves Diffusion-based Inverse Problem Solving (HRDIS).
🌟Comparison between RED-diff and our proposed HRDIS.
✨HRDIS can generate diverse and clear reconstructions.
Download ImageNet and FFHQ dataset. You need to write your data directory at _configs\dataset\imagenet256_val(ffhq256_val).yaml.
name: "ImageNet_256x256"
root: "./data/imagenet"
split: "val"
image_size: 256
channels: 3
meta_root: "_exp"
transform: "diffusion"
subset_txt: "misc/dgp_top1k.txt"
Download pretrained checkpoints and put them in _exp/ckpts as the following file.
Dataset | File | Model Source |
---|---|---|
ImageNet | imagenet/256x256_diffusion_uncond.pt | guided-diffusion |
FFHQ | ffhq/ffhq_10m.pt | DPS |
Install the dependencies:
pip install -r requirements.txt
Git clone external codes for non-linear deblurring.
git clone https://github.com/VinAIResearch/blur-kernel-space-exploring bkse
Download mask for inapinting from the Palette and put it in _exp/masks/20ff.npz
Select the test dataset by enabling the following code in ./main.py
@hydra.main(version_base="1.2", config_path="_configs", config_name="imagenet256_uncond")
#@hydra.main(version_base="1.2", config_path="_configs", config_name="ffhq256_uncond")
Tune the hyperparameters interactively using the sampling script:
sh sample_test.sh
@inproceedings{
dou2025hybrid,
title={Hybrid Regularization Improves Diffusion-based Inverse Problem Solving},
author={Hongkun Dou and Zeyu Li and Jinyang Du and Lijun Yang and Wen Yao and Yue Deng},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=d7pr2doXn3}
}