-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
60 lines (48 loc) · 1.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#! /usr/bin/env python
# coding=utf-8
# /************************************************************************************
# ***
# *** File Author: Dell, 2018年 09月 21日 星期五 10:25:44 CST
# ***
# ************************************************************************************/
import os
import argparse
import torch
import model
import data
from config import Config
parser = argparse.ArgumentParser(description='Train Text CNN classificer')
parser.add_argument(
'-model',
type=str,
default="model/textcnn.model",
help='file name of pre-trained model [model/textcnn.model]')
if __name__ == '__main__':
conf = Config()
conf.dump()
args = parser.parse_args()
if not os.path.isdir("logs"):
os.mkdir("logs")
if not os.path.isdir("model"):
os.mkdir("model")
print("Loading data...")
train_iter, text_field, label_field = data.fasttext_dataloader(
"data/train.txt", conf.batch_size)
data.save_vocab(text_field.vocab, "model/text.vocab")
data.save_vocab(label_field.vocab, "model/label.vocab")
# Update configurations
conf.embed_num = len(text_field.vocab)
conf.class_num = len(label_field.vocab) - 1
conf.kernel_sizes = [int(k) for k in conf.kernel_sizes.split(',')]
# model
if os.path.exists(args.model):
print('Loading model from {}...'.format(args.model))
cnn = torch.load(args.model)
else:
cnn = model.TextCNN(conf)
print(cnn)
try:
model.train(train_iter, cnn, conf)
except KeyboardInterrupt:
print('-' * 80)
print('Exiting from training early')