-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
193 lines (155 loc) · 5.18 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#! /usr/bin/env python
# coding=utf-8
# /************************************************************************************
# ***
# *** File Author: Dell, Thu Sep 20 21:42:14 CST 2018
# ***
# ************************************************************************************/
import argparse
import os
import torch
from torch.utils import data
from PIL import Image
from torchvision import transforms
from tqdm import tqdm
import numpy as np
import model
def sample_int(n):
i = n - 1
order = np.random.permutation(n)
while True:
yield order[i]
i += 1
if i >= n:
np.random.seed()
order = np.random.permutation(n)
i = 0
class LoopSampler(data.sampler.Sampler):
def __init__(self, data_source):
self.num_samples = len(data_source)
def __iter__(self):
return iter(sample_int(self.num_samples))
def __len__(self):
return 2**31
class FolderDataset(data.Dataset):
def __init__(self, root, transform):
super(FolderDataset, self).__init__()
self.root = root
self.paths = os.listdir(self.root)
self.transform = transform
def __getitem__(self, index):
path = self.paths[index]
img = Image.open(os.path.join(self.root, path)).convert('RGB')
img = self.transform(img)
return img
def __len__(self):
return len(self.paths)
def name(self):
return 'FolderDataset'
def update_learning_rate(optimizer, step):
lr = args.lr / (1.0 + args.lr_decay * step)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def save_steps(epochs):
n = int((epochs + 1) / 10)
if n < 10:
n = 10
# round to 10x times
n = 10 * int((n + 9) / 10)
return n
parser = argparse.ArgumentParser()
# Basic options
parser.add_argument(
'-content',
type=str,
required=True,
help='Directory path to a batch of content images')
parser.add_argument(
'-style',
type=str,
required=True,
help='Directory path to a batch of style images')
# Model options
parser.add_argument(
'-encoder',
type=str,
default='models/encoder.pth',
help='Pre-trained encoder model, default: models/encoder.pth')
parser.add_argument(
'-decoder',
type=str,
default='models/decoder.pth',
help='Pre-trained decoder model, default: models/decoder.pth')
# Training options
parser.add_argument(
'-save_dir',
default='logs',
help='Directory to save the model, default: logs')
parser.add_argument(
'-log_dir',
default='logs',
help='Directory to save the log, default: logs')
parser.add_argument('-lr', type=float, default=1e-4)
parser.add_argument('-lr_decay', type=float, default=5e-5)
parser.add_argument(
'-epochs',
type=int,
default=1000,
help='epochs for training. default: 1000')
parser.add_argument('-batch_size', type=int, default=8)
parser.add_argument('-style_weight', type=float, default=10.0)
parser.add_argument('-content_weight', type=float, default=1.0)
parser.add_argument('-n_threads', type=int, default=4)
if __name__ == '__main__':
args = parser.parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
if not os.path.exists(args.log_dir):
os.mkdir(args.log_dir)
# writer = SummaryWriter(log_dir=args.log_dir)
encoder = model.encoder_load(args.encoder)
decoder = model.decoder_load(args.decoder)
network = model.StyleNet(encoder, decoder)
network.train()
network.to(device)
T = transforms.Compose([
transforms.Resize(size=(512, 512)),
transforms.RandomCrop(256),
transforms.ToTensor()
])
c_dataset = FolderDataset(args.content, T)
s_dataset = FolderDataset(args.style, T)
c_iter = iter(
data.DataLoader(
c_dataset,
batch_size=args.batch_size,
sampler=LoopSampler(c_dataset),
num_workers=args.n_threads))
s_iter = iter(
data.DataLoader(
s_dataset,
batch_size=args.batch_size,
sampler=LoopSampler(s_dataset),
num_workers=args.n_threads))
optimizer = torch.optim.Adam(network.decoder.parameters(), lr=args.lr)
save_interval = save_steps(args.epochs)
for i in tqdm(range(args.epochs)):
update_learning_rate(optimizer, i)
c_images = next(c_iter).to(device)
s_images = next(s_iter).to(device)
loss_c, loss_s = network(c_images, s_images)
loss_c = args.content_weight * loss_c
loss_s = args.style_weight * loss_s
loss = loss_c + loss_s
optimizer.zero_grad()
loss.backward()
optimizer.step()
# writer.add_scalar('loss_content', loss_c.item(), i + 1)
# writer.add_scalar('loss_style', loss_s.item(), i + 1)
if (i + 1) % save_interval == 0 or (i + 1) == args.epochs:
state_dict = model.decoder.state_dict()
for key in state_dict.keys():
state_dict[key] = state_dict[key].to(torch.device('cpu'))
torch.save(state_dict, '{:s}/decoder_iter_{:d}.pth.tar'.format(
args.save_dir, i + 1))