-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
278 lines (210 loc) · 7.97 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# coding=utf-8
#
# /************************************************************************************
# ***
# *** File Author: Dell, 2018年 09月 18日 星期二 16:10:03 CST
# ***
# ************************************************************************************/
#
"""
data/train/lable1/...images.jpg
logs/project.model-epoch
"""
import os
import logging
import torch
import torchvision
import numpy as np
PROJECT = "flower"
DEFAULT_MODEL = "model/" + PROJECT + ".model"
DEFAULT_LABEL = "model/" + PROJECT + ".label"
DEFAULT_TRAIN_DATA_ROOT_DIR = "data/train"
DEFAULT_VALID_DATA_ROOT_DIR = "data/test"
IMAGENET_MEAN = [0.485, 0.456, 0.406]
IMAGENET_STD = [0.229, 0.224, 0.225]
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s')
class EpochLossAcc(object):
def __init__(self, title):
self.title = title
self.vis = None
self.win = None
try:
import visdom
self.vis = visdom.Visdom(raise_exceptions=True)
except:
logging.info("Could not connect to visdom server, please make sure:")
logging.info("1. install visdom:")
logging.info(" pip insall visdom")
logging.info("2. start visdom server: ")
logging.info(" python -m visdom.server &")
return
self.win = self.vis.line(
X=np.array([0]),
Y=np.column_stack((np.array([0]), np.array([0]))),
opts=dict(
title=self.title + ' loss & acc',
legend=['loss', 'acc'],
width=1280,
height=720,
xlabel='Epoch',
))
def plot(self, epoch, loss, acc):
if self.vis is None or self.win is None:
return
self.vis.line(
X=np.array([epoch]),
Y=np.column_stack((np.array([loss]), np.array([acc]))),
win=self.win,
update='append')
def load_class_names(model_file=DEFAULT_MODEL):
label_file = model_file.replace("model", "label")
if not os.path.exists(label_file):
label_file = DEFAULT_LABEL
f = open(label_file)
classnames = [line.strip() for line in f.readlines()]
return classnames
def train_data_loader(datadir, batchsize):
def save_class_names(classes):
sep = "\n"
f = open(DEFAULT_LABEL, 'w')
f.write(sep.join(classes))
f.close()
T = torchvision.transforms.Compose([
torchvision.transforms.RandomResizedCrop(224),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD)
])
ds = torchvision.datasets.ImageFolder(os.path.join(datadir), T)
print("Training data information:")
print(ds)
print("Class names:", ds.classes)
save_class_names(ds.classes)
return torch.utils.data.DataLoader(ds, batch_size=batchsize, shuffle=True, num_workers=2)
def valid_data_loader(datadir, batchsize):
T = torchvision.transforms.Compose([
torchvision.transforms.Resize(256),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD)
])
ds = torchvision.datasets.ImageFolder(os.path.join(datadir), T)
print("Evaluating data information:")
print(ds)
print("Class names:", ds.classes)
return torch.utils.data.DataLoader(ds, batch_size=batchsize, shuffle=True, num_workers=2)
def image_to_tensor(image):
T = torchvision.transforms.Compose([
torchvision.transforms.Resize(256),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD)
])
t = T(image)
t.unsqueeze_(0)
return t
def load_squeezenet_model(device, name):
classnames = load_class_names()
if os.path.exists(name):
model = torchvision.models.squeezenet1_1(pretrained=False)
else:
model = torchvision.models.squeezenet1_1(pretrained=True)
c = model.classifier[1]
c.out_channels = len(classnames)
model.classifier[1] = c
if os.path.exists(name):
model.load_state_dict(torch.load(name))
model = model.to(device)
return model
def load_resnet18_model(device, name):
classnames = load_class_names()
if os.path.exists(name):
model = torchvision.models.resnet18(pretrained=False)
else:
model = torchvision.models.resnet18(pretrained=True)
in_features = model.fc.in_features
model.fc = torch.nn.Linear(in_features, len(classnames))
if os.path.exists(name):
model.load_state_dict(torch.load(name))
model = model.to(device)
return model
def load_model(device, name):
return load_resnet18_model(device, name)
#return load_squeezenet_model(device, name)
def train_model(device, model, dataloader, epochs):
def save_model(model, epoch):
name = "logs/{:s}.model-{:d}".format(PROJECT, epoch)
logging.info('Saving model to ' + name + '...')
torch.save(model.state_dict(), name)
def save_steps(epochs):
n = int((epochs + 1)/10)
if n < 10:
n = 10
n = 10 * int((n + 9) / 10) # round to 10x times
return n
logging.info("Start training ...")
criterion = torch.nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 10 epochs
dec_lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
model.train() # Set model to training mode
viz = EpochLossAcc("Training")
save_interval = save_steps(epochs)
for epoch in range(epochs):
dec_lr_scheduler.step()
trainning_loss = 0.0
correct, total = 0, 0
# Iterate over data.
for inputs, labels in dataloader:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
# statics
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# statistics
trainning_loss += loss.item()
trainning_acc = 100.0 * correct/total
logging.info('Training epoch: %d/%d, loss: %12.4f, acc: %10.2f' %
(epoch + 1, epochs, trainning_loss, trainning_acc))
viz.plot(epoch, trainning_loss, trainning_acc)
if (epoch + 1) % save_interval == 0 or epoch == epochs - 1:
save_model(model, epoch + 1)
logging.info("Trainning finished.")
def eval_model(device, model, dataloader):
logging.info("Start evaluating ...")
training = model.training
model.eval() # Set model to evaluate mode
correct, total = 0, 0
with torch.no_grad():
for data in dataloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
x, predicted = torch.max(outputs.data,
1) # by 0 -- cols, 1 -- rows
total += labels.size(0)
correct += (predicted == labels).sum().item()
model.train(mode=training)
logging.info('Evaluating ACC: %10.2f%%' % (100.0 * correct / total))
logging.info("Evaluating finished.")
return correct / total
def model_predict(device, model, image):
t = image_to_tensor(image)
t = t.to(device)
model.eval()
with torch.no_grad():
outputs = model(t)
_, label = torch.max(outputs.data, 1) # by 0 -- cols, 1 -- rows
i = label[0].item()
outputs = torch.nn.functional.softmax(outputs, dim=1)
prob = outputs[0][i].item()
return i, prob