-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval.py
54 lines (47 loc) · 1.39 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# coding=utf-8
"""
#
# /************************************************************************************
# ***
# *** File Author: Dell, 2018年 09月 18日 星期二 16:09:52 CST
# ***
# ************************************************************************************/
#
"""
import os
import sys
import logging
import argparse
import model
parser = argparse.ArgumentParser(
description='Evaluate Image Classificer Model')
parser.add_argument(
'-root-dir',
type=str,
default=model.DEFAULT_VALID_DATA_ROOT_DIR,
help='validating data root directory, default: ' +
model.DEFAULT_VALID_DATA_ROOT_DIR)
parser.add_argument(
'-batch-size',
type=int,
default=64,
help='batch size for validating, default: 64')
parser.add_argument(
'-model',
type=str,
default=model.DEFAULT_MODEL,
help='trained model name, default: ' + model.DEFAULT_MODEL)
parser.add_argument(
'-device',
type=str,
default="cuda:0",
help='cuda:0 or cpu, default: cuda:0')
if __name__ == '__main__':
args = parser.parse_args()
if (not os.path.exists(args.root_dir)) or (not os.path.isdir(
args.root_dir)):
logging.error(args.root_dir + ' is not director or not exists.')
sys.exit(-1)
data = model.valid_data_loader(args.root_dir, args.batch_size)
net = model.load_model(args.device, args.model)
model.eval_model(args.device, net, data)