-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAula06.R
251 lines (185 loc) · 5.18 KB
/
Aula06.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
require(dplyr)
require(tidyr)
require(data.table)
car_crash = fread("data/Brazil Total highway crashes 2010 - 2023.csv.gz")
glimpse(car_crash)
car_crash %>%
select(moto,
starts_with("tr"),
ends_with("feridos"))
## Vetor de moto
car_crash %>%
pull(moto)
## data frame de moto
car_crash %>%
select(moto)
car_crash %>%
select(moto, automovel, data) %>%
filter(moto > 2 & automovel == 2)
car_crash %>%
select(moto, automovel, data) %>%
filter(moto > 2 | automovel == 2)
car_crash %>%
group_by(tipo_de_ocorrencia) %>%
summarise(media = mean(automovel, na.rm = T),
n = n()) %>% View
car_crash %>%
filter(tipo_de_ocorrencia %in% c("sem vítima", "com vítima")) %>%
group_by(tipo_de_ocorrencia) %>%
summarise(media_carros = mean(automovel, na.rm = T),
media_motos = mean(moto, na.rm = T),
mediana_carros = median(automovel, na.rm = T),
n = n(),
quantil_25 = quantile(automovel, probs = 0.25, na.rm = T)) %>%
arrange(n)
car_crash %>%
filter(tipo_de_ocorrencia %in% c("sem vítima", "com vítima")) %>%
group_by(tipo_de_ocorrencia) %>%
summarise(media_carros = mean(automovel, na.rm = T),
media_motos = mean(moto, na.rm = T),
mediana_carros = median(automovel, na.rm = T),
n = n(),
quantil_25 = quantile(automovel, probs = 0.25, na.rm = T)) %>%
arrange(desc(n))
####
car_crash %>%
group_by(tipo_de_acidente) %>%
summarise(n = n()) %>% View
car_crash %>%
filter(tipo_de_ocorrencia %in% c("sem vítima", "com vítima") &
tipo_de_acidente %in% c("Colisão Traseira", "Saida de Pista")
) %>%
group_by(tipo_de_ocorrencia, tipo_de_acidente) %>%
summarise( media_carros = mean(automovel, na.rm = T),
media_motos = mean(moto, na.rm = T),
mediana_carros = median(automovel, na.rm = T),
n = n(),
) %>%
arrange(desc(n))
starwars
#####
# Para cada espécie presente na base de dados,
# identifique o
# personagem mais velho e sua idade
# correspondente.
#
starwars %>%
select(name, birth_year, species) %>%
group_by(species) %>%
mutate(primeiro_da_especie = max(birth_year, na.rm = T)) %>%
filter(primeiro_da_especie == birth_year)
car_crash$data
### Datas
# String representando uma data
data_string <- "2024-10-23"
# Transformando a string em data
data <- as.Date(data_string)
# Exibindo a data
print(data)
data_string <- "23/10/2024"
data <- as.Date(data_string,
format = "%d/%m/%Y")
print(data)
# Somando DIAS
data + 31
data + 365
data1 <- as.Date("2023-08-21")
data2 <- as.Date("2023-08-15")
data1 > data2 # Verifica se data1 é posterior a data2
data > data1
(data + 365) < data
data <- as.Date("2023-08-21")
ano <- format(data, "%Y")
mes <- format(data, "%m")
dia <- format(data, "%d")
dia
diferenca <- difftime(data1, (data2+365), units = "weeks")
diferenca
#####
require(lubridate)
data_ymd <- ymd("2023-08-21")
data_mdy <- mdy("08-21-2023")
data_dmy <- dmy("21-08-2023")
print(data_ymd)
class(dmy)
data <- ymd("2024-10-23")
data
data_nova <- data + days(7) # Adiciona 7 dias
data_nova
data_anterior <- data - months(2) # Subtrai 2 meses
data_anterior
print(data_nova)
day(data)
month(data)
year(data)
data <- ymd_hms("2024-10-23 15:30:45")
data
ano <- year(data)
mes <- month(data)
dia <- day(data)
hora <- hour(data)
minuto <- minute(data)
segundo <- second(data)
print(ano)
mes
hora
segundo
data1 <- ymd("2023-08-21")
data2 <- ymd("2023-08-15")
diferenca_em_dias <- as.numeric(data2 - data1)
diferenca_em_semanas <- as.numeric(days(data2 - data1))
print(diferenca_em_dias)
### Converter FH
# Data original no fuso horário de Nova Iorque
data_ny <- ymd_hms("2023-08-21 12:00:00",
tz = "America/New_York")
# Converter para o fuso horário de Londres
data_london <- with_tz(data_ny, tz = "Europe/London")
print(data_ny)
print(data_london)
with_tz(data_ny, tz = "GMT")
car_crash2 = car_crash %>%
mutate( nova_data =
as.Date(data,
format = "%d/%m/%Y")) %>%
mutate(novo_horario = hms(horario)) %>%
mutate(mes = month(nova_data),
ano = year(nova_data),
hora = hour(novo_horario))
car_crash2 %>%
group_by(mes) %>%
summarise(total_mes = n()) %>%
filter(total_mes == max(total_mes))
####
planes %>%
count(tailnum) %>%
filter(n > 1)
planes %>%
group_by(tailnum) %>%
summarise(n = n()) %>%
filter(n > 1)
weather %>%
count(time_hour, origin) %>%
filter(n > 1)
flights2 <- flights %>%
filter(distance > 2000) %>%
select(year, time_hour, origin, dest, tailnum, carrier)
flights2
flights2_airlines =
flights2 %>%
left_join(., airlines,
by = "carrier")
flights2 %>%
left_join(., airlines,
by = c("carrier" = "carrier"))
planes_flights = flights2 %>%
right_join(planes, by = "tailnum")
origin_flights = flights2 %>%
inner_join(airports,
by = c("origin"= "faa"))
origin_flights = airports %>%
inner_join(flights2, join_by(faa == origin))
dest_flights = flights2 %>%
full_join(airports, by = c("dest"= "faa"))
dest_flights = flights2 %>%
full_join(airports, join_by(dest == faa))