forked from wuzhe71/CPD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_CPD.py
83 lines (74 loc) · 2.91 KB
/
test_CPD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
import torch.nn.functional as F
import numpy as np
import pdb, os, argparse
from scipy import misc
import imageio
from model.CPD_ResNet_models import CPD_ResNet
from model.CPD_models import CPD_VGG
#from model.CPD_models import CPD_VGG
from model.CPD_MobileNet_models import CPD_MobileNet, CPD_MobileNet_Single
from data import test_dataset
import time
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
parser = argparse.ArgumentParser()
parser.add_argument('--testsize', type=int, default=448, help='testing size')
parser.add_argument('--is_ResNet', type=str, default='mobile', help='VGG or ResNet backbone')
opt = parser.parse_args()
dataset_path = '/media/hypevr/KEY/'#test_data/'
model_root = 'models/mobile_random_0.1/'#'models/CPD_ResNet50_scratch/'
model_dir = model_root + 'CPD_143.pth'
#model_dir = 'CPD.pth'
if opt.is_ResNet == 'resnet':
model = CPD_ResNet()
model.load_state_dict(torch.load(model_dir))
elif opt.is_ResNet == 'vgg':
model = CPD_VGG()
model.load_state_dict(torch.load(model_dir))
#model.load_state_dict(torch.load('CPD.pth'))
elif opt.is_ResNet == 'mobile':
model = CPD_MobileNet_Single()
model.load_state_dict(torch.load(model_dir))
model.cuda()
#model.eval()
#example = torch.rand(1, 3, 352, 352).cuda()
scriptedmodel = torch.jit.script(model)#, example)
torch.jit.save(scriptedmodel, 'model_save.pt')
model = torch.load('model_save.pt')
model.eval()
test_datasets = ['test_img'] #['test_images']
for dataset in test_datasets:
# if opt.is_ResNet:
# save_path = dataset_path + 'test_results' + '/'
# else:
# save_path = './results/VGG16/' + dataset + '/'
save_path = dataset_path + dataset + '_masks_cpd_orig/'
olay_path = dataset_path + dataset + '_olay_cpd_orig/'
if not os.path.exists(save_path):
os.makedirs(save_path)
if not os.path.exists(olay_path):
os.makedirs(olay_path)
image_root = dataset_path + dataset +'/'
gt_root = dataset_path + dataset +'/'
test_loader = test_dataset(image_root, gt_root, opt.testsize, True)
for i in range(test_loader.size):
image_orig, image, gt, name = test_loader.load_data()
#gt = np.asarray(gt, np.float32)
#gt /= (gt.max() + 1e-8)
image = image.cuda()
image = torch.tile(image, (1, 1, 1, 1))
# print(image.shape)
# input('wait')
start_time = time.time()
res = model(image) #
torch.cuda.synchronize()
res.cpu()
print(time.time() - start_time)
res = F.upsample(res, size=(image_orig.shape[0], image_orig.shape[1]), mode='bilinear', align_corners=False)
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
res[res<0.5] = 0
olay_mask = np.tile(np.expand_dims(res, axis=-1), (1, 1, 3))
olay = image_orig * olay_mask
imageio.imwrite(save_path+name, res)
imageio.imwrite(olay_path + name, olay)