-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathother_usage.sh
16 lines (12 loc) · 3.33 KB
/
other_usage.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# 1、Simultaneously evaluating 25 multivariate datasets, note that there is no need to specify the --data-name-list parameter at this time.
python ./scripts/run_benchmark.py --config-path "rolling_forecast_config.json" --strategy-args '{"horizon":24}' --model-name "time_series_library.DLinear" --model-hyper-params '{"batch_size": 16, "d_ff": 512, "d_model": 256, "lr": 0.01, "horizon": 24, "seq_len": 104}' --adapter "transformer_adapter" --gpus 0 --num-workers 1 --timeout 60000 --save-path "DLinear"
# 2、Use ray to parallelly evaluate all multivariate datasets.
python ./scripts/run_benchmark.py --config-path "rolling_forecast_config.json" --strategy-args '{"horizon":24}' --model-name "time_series_library.DLinear" --model-hyper-params '{"batch_size": 16, "d_ff": 512, "d_model": 256, "lr": 0.01, "horizon": 24, "seq_len": 104}' --adapter "transformer_adapter" --gpus 0 1 2 3 --eval-backend "ray" --num-workers 4 --timeout 60000 --save-path "DLinear"
# 3、According to the forecast horizon of the dataset, it is divided into two categories of multivariate datasets (24, 36, 48, 60 and 96, 192, 336, 720), and evaluated simultaneously.
python ./scripts/run_benchmark.py --config-path "rolling_forecast_config.json" --data-name-list "ETTm1.csv" "ETTm2.csv" "Exchange.csv" "Weather.csv" "METR-LA.csv" "PEMS-BAY.csv" "PEMS04.csv" "PEMS08.csv" "Electricity.csv" "Traffic.csv" "AQShunyi.csv" "AQWan.csv" "ZafNoo.csv" "CzeLan.csv" "Wind.csv" "ETTh1.csv" "ETTh2.csv" "Solar.csv" --strategy-args '{"horizon":96}' --model-name "time_series_library.Linear" --model-hyper-params '{"d_ff": 64, "d_model": 32, "lr": 0.005, "horizon": 96, "seq_len": 512}' --adapter "transformer_adapter" --gpus 0 --num-workers 1 --timeout 60000 --save-path "Linear"
python ./scripts/run_benchmark.py --config-path "rolling_forecast_config.json" --data-name-list "Covid-19.csv" "FRED-MD.csv" "ILI.csv" "NN5.csv" "NYSE.csv" "Wike2000.csv" "NASDAQ.csv" --strategy-args '{"horizon":24}' --model-name "time_series_library.Linear" --model-hyper-params '{"d_ff": 64, "d_model": 32, "lr": 0.005, "horizon": 24, "seq_len": 104}' --adapter "transformer_adapter" --gpus 0 --num-workers 1 --timeout 60000 --save-path "Linear"
# 4、Simultaneously evaluate the performance of specified algorithms on specified multivariate datasets.
# Please note that --model-name, --model-hyper-params, and --adapter correspond one-to-one.
# For algorithms starting with time_series_library, the corresponding adapter is transformer_adapter; The corresponding adapter starting with darts is "None"
# If an algorithm does not require input parameters, write {} at the corresponding position in --model-hyper-params.
python ./scripts/run_benchmark.py --config-path "rolling_forecast_config.json" --data-name-list "ILI.csv" "NN5.csv" --strategy-args '{"horizon":24}' --model-name "time_series_library.DLinear" "self_impl.VAR_model" "time_series_library.PatchTST" "darts.TCNModel" --model-hyper-params '{"batch_size": 16, "d_ff": 512, "d_model": 256, "lr": 0.01, "horizon": 24, "seq_len": 104}' {} '{"batch_size": 32, "d_model": 512, "e_layers": 4, "factor": 3, "n_headers": 4, "horizon": 24, "seq_len": 104, "d_ff": 2048}' '{"input_chunk_length": 104, "n_epochs": 10, "output_chunk_length": 24}' --adapter "transformer_adapter" "None" "transformer_adapter" "None" --gpus 0 --num-workers 1 --timeout 60000 --save-path "Multiple_algorithms"