Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

errors when I ran finetune_demo.py #1

Open
xuzhang5788 opened this issue May 17, 2020 · 1 comment
Open

errors when I ran finetune_demo.py #1

xuzhang5788 opened this issue May 17, 2020 · 1 comment

Comments

@xuzhang5788
Copy link

Thank you for your upload.
I finetuned v11 and v14, it went great. However, when I do the same thing for v1, v2, v3 and v4, I got different error messages as the followings:

$ python finetune_demo.py --fold 0 --model_version 1
WARNING:tensorflow:Estimator's model_fn (<bound method MbertPcnnModel.model_fn_v1 of <src.finetune.dti_model.MbertPcnnModel object at 0x7fc00f61c400>>) includes params argument, but params are not passed to Estimator.
INFO:tensorflow:Using config: {'_save_checkpoints_secs': None, '_keep_checkpoint_every_n_hours': 10000, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7fc00f61c470>, '_num_ps_replicas': 0, '_task_id': 0, '_cluster': None, '_num_worker_replicas': 1, '_save_checkpoints_steps': 150, '_global_id_in_cluster': 0, '_session_config': gpu_options {
per_process_gpu_memory_fraction: 0.9
allow_growth: true
}
, '_model_dir': '../../data/kiba/mbert_cnn_v1_lr0.0001_k12_k12_k12_fold0/', '_tf_random_seed': None, '_keep_checkpoint_max': 5, '_evaluation_master': '', '_master': '', '_device_fn': None, '_train_distribute': None, '_task_type': 'worker', '_is_chief': True, '_save_summary_steps': 100, '_tpu_config': TPUConfig(iterations_per_loop=150, num_shards=8, num_cores_per_replica=None, per_host_input_for_training=3, tpu_job_name=None, initial_infeed_sleep_secs=None), '_log_step_count_steps': None}
INFO:tensorflow:_TPUContext: eval_on_tpu True
WARNING:tensorflow:eval_on_tpu ignored because use_tpu is False.
INFO:tensorflow:Training for 153974 steps (1000.00 epochs in total). Current step 153974.
INFO:tensorflow:Finished training up to step 153974. Elapsed seconds 0.
INFO:tensorflow:************************** [kiba-V1-lr(0.0001)-f(12,12,12)step(153974/153974)] ***************************
INFO:tensorflow:************************** Final (sel_mse) Best @ [0] ***************************
INFO:tensorflow:********** [dev] mse: 10000.000000 ci 0.000000 **********
INFO:tensorflow:********** [tst] mse: 10000.000000 ci 0.000000 **********
INFO:tensorflow:********************************************************************
INFO:tensorflow:************************** [kiba-V1-lr(0.0001)-f(12,12,12)step(153974/153974)] ***************************
INFO:tensorflow:************************** Final(sel_ci) Best @ [0] ***************************
INFO:tensorflow:********** [dev] mse: 10000.000000 ci 0.000000 **********
INFO:tensorflow:********** [tst] mse: 10000.000000 ci 0.000000 **********
INFO:tensorflow:********************************************************************

$ python finetune_demo.py --fold 0 --model_version 2
WARNING:tensorflow:Estimator's model_fn (<bound method MbertPcnnModel.model_fn_v2 of <src.finetune.dti_model.MbertPcnnModel object at 0x7fd67286a400>>) includes params argument, but params are not passed to Estimator.
INFO:tensorflow:Using config: {'_is_chief': True, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7fd67286a470>, '_train_distribute': None, '_task_type': 'worker', '_cluster': None, '_keep_checkpoint_every_n_hours': 10000, '_tf_random_seed': None, '_evaluation_master': '', '_service': None, '_global_id_in_cluster': 0, '_model_dir': '../../data/kiba/mbert_cnn_v2_lr0.0001_k12_k12_k12_fold0/', '_master': '', '_save_summary_steps': 100, '_device_fn': None, '_save_checkpoints_steps': 150, '_keep_checkpoint_max': 5, '_num_ps_replicas': 0, '_save_checkpoints_secs': None, '_num_worker_replicas': 1, '_log_step_count_steps': None, '_tpu_config': TPUConfig(iterations_per_loop=150, num_shards=8, num_cores_per_replica=None, per_host_input_for_training=3, tpu_job_name=None, initial_infeed_sleep_secs=None), '_task_id': 0, '_session_config': gpu_options {
per_process_gpu_memory_fraction: 0.9
allow_growth: true
}
}
INFO:tensorflow:_TPUContext: eval_on_tpu True
WARNING:tensorflow:eval_on_tpu ignored because use_tpu is False.
INFO:tensorflow:Training for 153974 steps (1000.00 epochs in total). Current step 0.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Running train on CPU
INFO:tensorflow:*********************************** MbertPcnnModel V2 ***********************************
Traceback (most recent call last):
File "finetune_demo.py", line 374, in
tf.app.run(main)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/python/platform/app.py", line 125, in run
_sys.exit(main(argv))
File "finetune_demo.py", line 337, in main
estimator.train(input_fn=input_fn_trn, max_steps=next_checkpoint)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py", line 376, in train
loss = self._train_model(input_fn, hooks, saving_listeners)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py", line 1145, in _train_model
return self._train_model_default(input_fn, hooks, saving_listeners)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py", line 1170, in _train_model_default
features, labels, model_fn_lib.ModeKeys.TRAIN, self.config)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/contrib/tpu/python/tpu/tpu_estimator.py", line 2162, in _call_model_fn
features, labels, mode, config)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py", line 1133, in _call_model_fn
model_fn_results = self._model_fn(features=features, **kwargs)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/contrib/tpu/python/tpu/tpu_estimator.py", line 2391, in _model_fn
features, labels, is_export_mode=is_export_mode)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/contrib/tpu/python/tpu/tpu_estimator.py", line 1244, in call_without_tpu
return self._call_model_fn(features, labels, is_export_mode=is_export_mode)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/contrib/tpu/python/tpu/tpu_estimator.py", line 1505, in _call_model_fn
estimator_spec = self._model_fn(features=features, **kwargs)
File "/mnt/HD/mt-dti/src/finetune/dti_model.py", line 826, in model_fn_v2
cnn_molecule = DeepConvolutionModelWithoutEmbedding(config_molecule, training, molecule_tokens)
File "/mnt/HD/mt-dti/src/finetune/dti_model.py", line 207, in init
kernel_size=config.kernel_size,
AttributeError: 'DeepConvolutionModelConfig' object has no attribute 'kernel_size'

$ python finetune_demo.py --fold 0 --model_version 3
WARNING:tensorflow:Estimator's model_fn (<bound method MbertPcnnModel.model_fn_v3 of <src.finetune.dti_model.MbertPcnnModel object at 0x7fe76421b400>>) includes params argument, but params are not passed to Estimator.
INFO:tensorflow:Using config: {'_evaluation_master': '', '_cluster': None, '_num_worker_replicas': 1, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7fe76421b470>, '_task_type': 'worker', '_task_id': 0, '_tpu_config': TPUConfig(iterations_per_loop=150, num_shards=8, num_cores_per_replica=None, per_host_input_for_training=3, tpu_job_name=None, initial_infeed_sleep_secs=None), '_service': None, '_save_checkpoints_steps': 150, '_keep_checkpoint_every_n_hours': 10000, '_session_config': gpu_options {
per_process_gpu_memory_fraction: 0.9
allow_growth: true
}
, '_global_id_in_cluster': 0, '_keep_checkpoint_max': 5, '_save_checkpoints_secs': None, '_device_fn': None, '_train_distribute': None, '_num_ps_replicas': 0, '_save_summary_steps': 100, '_model_dir': '../../data/kiba/mbert_cnn_v3_lr0.0001_k12_k12_k12_fold0/', '_is_chief': True, '_tf_random_seed': None, '_log_step_count_steps': None, '_master': ''}
INFO:tensorflow:_TPUContext: eval_on_tpu True
WARNING:tensorflow:eval_on_tpu ignored because use_tpu is False.
INFO:tensorflow:Training for 153974 steps (1000.00 epochs in total). Current step 0.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Running train on CPU
INFO:tensorflow:*********************************** MbertPcnnModel V3 ***********************************
Traceback (most recent call last):
File "finetune_demo.py", line 374, in
tf.app.run(main)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/python/platform/app.py", line 125, in run
_sys.exit(main(argv))
File "finetune_demo.py", line 337, in main
estimator.train(input_fn=input_fn_trn, max_steps=next_checkpoint)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py", line 376, in train
loss = self._train_model(input_fn, hooks, saving_listeners)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py", line 1145, in _train_model
return self._train_model_default(input_fn, hooks, saving_listeners)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py", line 1170, in _train_model_default
features, labels, model_fn_lib.ModeKeys.TRAIN, self.config)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/contrib/tpu/python/tpu/tpu_estimator.py", line 2162, in _call_model_fn
features, labels, mode, config)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py", line 1133, in _call_model_fn
model_fn_results = self._model_fn(features=features, **kwargs)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/contrib/tpu/python/tpu/tpu_estimator.py", line 2391, in _model_fn
features, labels, is_export_mode=is_export_mode)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/contrib/tpu/python/tpu/tpu_estimator.py", line 1244, in call_without_tpu
return self._call_model_fn(features, labels, is_export_mode=is_export_mode)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/contrib/tpu/python/tpu/tpu_estimator.py", line 1505, in _call_model_fn
estimator_spec = self._model_fn(features=features, **kwargs)
File "/mnt/HD/mt-dti/src/finetune/dti_model.py", line 1031, in model_fn_v3
scaffold_fn=scaffold_fn)
TypeError: new() got an unexpected keyword argument 'training_hooks'

$ python finetune_demo.py --fold 0 --model_version 4
WARNING:tensorflow:Estimator's model_fn (<bound method MbertPcnnModel.model_fn_v4 of <src.finetune.dti_model.MbertPcnnModel object at 0x7f4934566400>>) includes params argument, but params are not passed to Estimator.
INFO:tensorflow:Using config: {'_save_summary_steps': 100, '_evaluation_master': '', '_master': '', '_is_chief': True, '_tpu_config': TPUConfig(iterations_per_loop=150, num_shards=8, num_cores_per_replica=None, per_host_input_for_training=3, tpu_job_name=None, initial_infeed_sleep_secs=None), '_task_id': 0, '_keep_checkpoint_every_n_hours': 10000, '_model_dir': '../../data/kiba/mbert_cnn_v4_lr0.0001_k12_k12_k12_fold0/', '_save_checkpoints_secs': None, '_save_checkpoints_steps': 150, '_service': None, '_session_config': gpu_options {
per_process_gpu_memory_fraction: 0.9
allow_growth: true
}
, '_log_step_count_steps': None, '_keep_checkpoint_max': 5, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7f4934566470>, '_cluster': None, '_tf_random_seed': None, '_num_worker_replicas': 1, '_global_id_in_cluster': 0, '_device_fn': None, '_train_distribute': None, '_task_type': 'worker', '_num_ps_replicas': 0}
INFO:tensorflow:_TPUContext: eval_on_tpu True
WARNING:tensorflow:eval_on_tpu ignored because use_tpu is False.
INFO:tensorflow:Training for 153974 steps (1000.00 epochs in total). Current step 0.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Running train on CPU
INFO:tensorflow:*********************************** MbertPcnnModel V4 ***********************************
Traceback (most recent call last):
File "finetune_demo.py", line 374, in
tf.app.run(main)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/python/platform/app.py", line 125, in run
_sys.exit(main(argv))
File "finetune_demo.py", line 337, in main
estimator.train(input_fn=input_fn_trn, max_steps=next_checkpoint)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py", line 376, in train
loss = self._train_model(input_fn, hooks, saving_listeners)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py", line 1145, in _train_model
return self._train_model_default(input_fn, hooks, saving_listeners)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py", line 1170, in _train_model_default
features, labels, model_fn_lib.ModeKeys.TRAIN, self.config)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/contrib/tpu/python/tpu/tpu_estimator.py", line 2162, in _call_model_fn
features, labels, mode, config)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py", line 1133, in _call_model_fn
model_fn_results = self._model_fn(features=features, **kwargs)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/contrib/tpu/python/tpu/tpu_estimator.py", line 2391, in _model_fn
features, labels, is_export_mode=is_export_mode)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/contrib/tpu/python/tpu/tpu_estimator.py", line 1244, in call_without_tpu
return self._call_model_fn(features, labels, is_export_mode=is_export_mode)
File "/home/pharma1/venv_silico/lib/python3.5/site-packages/tensorflow/contrib/tpu/python/tpu/tpu_estimator.py", line 1505, in _call_model_fn
estimator_spec = self._model_fn(features=features, **kwargs)
File "/mnt/HD/mt-dti/src/finetune/dti_model.py", line 1144, in model_fn_v4
loss, self.learning_rate, self.num_train_steps, self.num_warmup_steps, self.use_tpu)
File "/mnt/HD/mt-dti/src/bert/optimization.py", line 66, in create_optimizer
grads = tf.gradients(loss, tvars)
NameError: name 'tvars' is not defined

@pykao
Copy link

pykao commented Nov 26, 2020

Hi, I also have the same question but I do not think the author is maintaining this repo anymore.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants