-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathceleba_recognition.py
172 lines (136 loc) · 6.78 KB
/
celeba_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import argparse
import os
import ruamel.yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.utils.data import DataLoader
from torch.cuda.amp import GradScaler, autocast
from models.fflip_celeba_recognition import celeba_recognition
from models import utils
from eval.celeba_recognition import evaluation, eval
from models.utils import warmup_lr_schedule, step_lr_schedule, cosine_lr_schedule
from data import create_dataset, create_sampler, create_loader
def train(model, data_loader, optimizer, epoch, device, config):
# train
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
metric_logger.add_meter('ce_loss', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
for i, (image, target) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
image = image.to(device, non_blocking=True)
optimizer.zero_grad()
ce_loss = model(image, target)
ce_loss.backward()
optimizer.step()
metric_logger.update(ce_loss=ce_loss.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
#### Dataset ####
print("Creating dataset")
train_dataset, test_dataset = create_dataset(config['dataset'], config)
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler([train_dataset], [True], num_tasks, global_rank) + [None]
else:
samplers = [None, None]
train_loader, test_loader = create_loader([train_dataset, test_dataset], samplers,
batch_size=[config['batch_size_train']] + [config['batch_size_test']],
num_workers=[8, 8],
is_trains=[True, False],
collate_fns=[None, None])
#### Model ####
print("Creating model")
model = celeba_recognition(pretrained=config['pretrained'], vit=config['vit'], num_classes=config['num_classes'], intermediate_hidden_state=config['intermediate_hidden_state'])
model = model.to(device)
optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])
start_epoch = 0
if args.checkpoint:
checkpoint = torch.load(args.checkpoint, map_location='cpu')
state_dict = checkpoint['model']
model.load_state_dict(state_dict)
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
print('resume checkpoint from %s'%args.checkpoint)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
best = 0
best_epoch = 0
print("Start training")
start_time = time.time()
for epoch in range(start_epoch, config['max_epoch']):
if not args.evaluate:
if args.distributed:
train_loader.sampler.set_epoch(epoch)
cosine_lr_schedule(optimizer, epoch, config['max_epoch'], config['init_lr'], config['min_lr'])
train_stats = train(model, train_loader, optimizer, epoch, device, config)
pred, target = evaluation(args, model_without_ddp, test_loader, device, config)
if utils.is_main_process():
test_result = eval(pred, target)
print(test_result)
if args.evaluate:
log_stats = {**{f'test_{k}': v for k, v in test_result.items()}}
with open(os.path.join(args.output_dir, "evaluate_log.txt"), "a") as f:
f.write(json.dumps(log_stats) + "\n")
else:
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_result.items()},
'epoch': epoch,
'best_epoch': best_epoch,
}
with open(os.path.join(args.output_dir, "train_log.txt"), "a") as f:
f.write(json.dumps(log_stats) + "\n")
save_obj = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'config': config,
'epoch': epoch,
}
if test_result['acc'] > best:
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))
best = test_result['acc']
best_epoch = epoch
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='/home/ubuntu/lxd-workplace/LYT/FFLIP/itc_itm_mm/configs/celeba_recognition.yaml')
parser.add_argument('--output_dir', default='outputs/celeba_recognition')
parser.add_argument('--checkpoint', default='')
parser.add_argument('--evaluate', type=bool, default=False)
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=False, type=bool, help='whether to use distributed mode to training')
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config)