forked from mfe5003/rydtip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRb87BlockadeSimple.py
139 lines (92 loc) · 4.82 KB
/
Rb87BlockadeSimple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# coding: utf-8
# In[1]:
import scipy.constants as consts
from lib.AtomNumbers import QD, Rb87, State, TransitionFrequency
import lib.DipoleDipoleInteractions as ddi
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from sympy import *
import datetime
get_ipython().magic(u'matplotlib inline')
# In[2]:
states = []
n_min = 50
n_max = 150
l_max = 1 # stop at f
sI = State(97,2,2.5,2.5)
mj_total = 2*sI.mj
for n in range(n_min,n_max):
for l in [sI.l-1,sI.l+1]:
for j in np.arange(abs(l-0.5),l+1): # l+0.5 doesn't regiser the second j value
for mj in np.arange(-j,j+0.5):
s=State(n,l,j,mj)
states.append([s, TransitionFrequency(Rb87,sI,s)])
print(len(states))
# ### calculate forster defects
# In[3]:
EnergyCut = 1e9 # only consider states within 1 Ghz
molecular_states = []
for s1 in states:
for s2 in states:
# molecular dissociation energy limit relative to the initial state
molecular_energy = s1[1][0]+s2[1][0]
if abs(molecular_energy) <= EnergyCut:
if s1[0].mj + s2[0].mj == mj_total:
molecular_states.append([(s1[0],s2[0]), molecular_energy])
print(len(molecular_states))
# ### Build the Hamiltonian
# In[4]:
dimension = len(molecular_states)+1 # add on the initial state
Hcoupling = np.zeros((dimension,dimension))
energies = np.zeros(dimension)
for i in xrange(dimension-1):
ms = molecular_states[i]
temp = Rb87.c3(sI,sI,ms[0][0],ms[0][1])[0]
Hcoupling[i][-1] = temp
Hcoupling[-1][i] = temp
energies[i] = ms[1]*1e-9 # in GHz
# #### verify at large R (100 um)
# In[5]:
ddi.getRelevantCouplings(Hcoupling, energies, 100, 0.001)
# #### Calculate blockade curves
# In[6]:
data = []
# In[7]:
r_start = 3
r_stop = 15
samples = 500
r_last = 0
for r in np.linspace(r_start,r_stop,samples):
current_time = datetime.datetime.now().time()
if int(r) > int(r_last):
print(r)
print(current_time.isoformat())
r_last = r
data = data + ddi.getRelevantCouplings(Hcoupling, energies, r, 0.01, 1.0)
# In[8]:
mark_r = [0.20202, 0.40404, 0.606061, 0.808081, 1.0101, 1.21212, 1.41414, 1.61616, 1.81818, 2.0202, 2.22222, 2.42424, 2.62626, 2.82828, 3.0303, 3.23232, 3.43434, 3.63636, 3.83838, 4.0404, 4.24242, 4.44444, 4.64646, 4.84848, 5.05051, 5.25253, 5.45455, 5.65657, 5.85859, 6.06061, 6.26263, 6.46465, 6.66667, 6.86869, 7.07071, 7.27273, 7.47475, 7.67677, 7.87879, 8.08081, 8.28283, 8.48485, 8.68687, 8.88889, 9.09091, 9.29293, 9.49495, 9.69697, 9.89899, 10.101, 10.303, 10.5051, 10.7071, 10.9091, 11.1111, 11.3131, 11.5152, 11.7172, 11.9192, 12.1212, 12.3232, 12.5253, 12.7273, 12.9293, 13.1313, 13.3333, 13.5354, 13.7374, 13.9394, 14.1414, 14.3434, 14.5455, 14.7475, 14.9495, 15.1515, 15.3535, 15.5556, 15.7576, 15.9596, 16.1616, 16.3636, 16.5657, 16.7677, 16.9697, 17.1717, 17.3737, 17.5758, 17.7778, 17.9798, 18.1818, 18.3838, 18.5859, 18.7879, 18.9899, 19.1919, 19.3939, 19.596, 19.798, 20.]
mark_B = [-10966.3, -1370.79, -406.16, -171.349, -87.7303, -50.7695, -31.971, -21.4175, -15.0414, -10.9642, -8.23635, -6.34261, -4.98687, -3.99069, -3.24218, -2.66872, -2.22181, -1.86818, -1.58454, -1.35422, -1.16507, -1.00814, -0.876692, -0.76563, -0.671032, -0.589863, -0.51975, -0.458827, -0.405612, -0.358925, -0.317818, -0.281522, -0.24941, -0.220963, -0.195746, -0.17339, -0.153577, -0.136026, -0.120493, -0.106757, -0.0946198, -0.0839036, -0.074448, -0.0661083, -0.0587547, -0.0522711, -0.0465538, -0.0415106, -0.0370599, -0.0331295, -0.0296559, -0.0265832, -0.0238624, -0.0214505, -0.01931, -0.017408, -0.0157157, -0.0142081, -0.0128632, -0.0116618, -0.0105871, -0.00962452, -0.00876107, -0.00798552, -0.00728798, -0.00665975, -0.00609318, -0.00558157, -0.00511896, -0.00470014, -0.00432048, -0.0039759, -0.00366277, -0.00337787, -0.00311837, -0.00288173, -0.00266568, -0.00246822, -0.00228756, -0.00212208, -0.00197036, -0.0018311, -0.00170316, -0.0015855, -0.0014772, -0.00137741, -0.00128538, -0.00120043, -0.00112194, -0.00104937, -0.000982209, -0.00092, -0.000862334, -0.000808835, -0.000759164, -0.000713011, -0.000670096, -0.00063016, -0.000592972]
# In[11]:
plt.figure(figsize=(12,8))
x =[]
x.append([ d[0] for d in data ])
x.append([ d[1] for d in data ])
x.append(np.real([ 1-sqrt(d[2]) for d in data ]))
idx = x[2].argsort()[::-1]
x[0] = [ x[0][i] for i in idx ]
x[1] = [ x[1][i] for i in idx ]
x[2] = [ x[2][i] for i in idx ]
plt.scatter(x[0], x[1], c=x[2], marker='o', s=30, vmax=1, vmin=0, linewidth=0, alpha=1)
plt.plot(mark_r,mark_B, color='r')
plt.gray()
plt.ylim(-0.5,0.5)
plt.xlim(0,1.1*r_stop)
plt.grid(b=True, which='major', color='0.5', linestyle='-')
plt.grid(b=True, which='minor', color='0.75', linestyle='--')
plt.title('Rybderg Blockade ${}+{}$, B=0 T'.format(sI,sI), fontsize=24)
plt.xlabel('$R (\mu m)$', fontsize=20)
plt.ylabel('U (GHz)', fontsize=20)
#plt.savefig('MolecularResonances_B=370uT_97D52m52_97D52m52.pdf')
plt.show()
# In[ ]: