forked from mfe5003/rydtip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCsStarkDC.py
286 lines (210 loc) · 8.98 KB
/
CsStarkDC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#!/usr/bin/python
from __future__ import division
import os
import sys
import numpy as np
import scipy as sp
from scipy.special import *
from math import *
import time
try:
from sympy.mpmath import *
except:
from mpmath import *
import matplotlib.pyplot as plt
from wignerrotation import rotmat
from clebsch import clebsch
from quantumdefects import *
from getStateList import *
from radialmatrixelements import rme
from utilityfunctions import *
if (len(sys.argv) != 8):
print "Incorrect number of command line arguments."
print ""
print "Program usage:"
print "{} n l acf w theta emin emax estep cluster floquetterms vecnum".format(sys.argv[0])
print ""
print "n: Principal quantum number of state of interest"
print "l: Orbital quantum number of state of interest"
print "emin, emax, estep: min, max, and step for DC electric field (V/cm)"
print "cluster: identifier for the job which this process belongs to."
print "vecnum: E-field step number for which to export eigenvectors. Use -1 to not export any eigenvectors."
print ""
print "Example usage:"
print "{} 90 1 0 0.05 0.001 8675309 -1".format(sys.argv[0])
quit()
print "Start time: {}".format(time.strftime("%a, %d %b %Y %H:%M:%S +0000", time.gmtime()))
basedir=""
nState=int(sys.argv[1])
lState=int(sys.argv[2])
eminvcm, emaxvcm, estepvcm = float(sys.argv[3]), float(sys.argv[4]), float(sys.argv[5])
cluster=sys.argv[6]
vecnum=int(float(sys.argv[7]))
if (vecnum < 0):
exportVecs=False
else:
exportVecs=True
outputunit = 29979
atomicnumber = 55
maxL = nState-1
QDmargin = 4.5
loadpreviousrmatrix = False
if (atomicnumber == 55):
atomStr = "Cs"
outputRelPath = ""
Ry = 109736.86224
rbatomicweight = 132.9054
elif (atomicnumber == 37):
atomStr = "Rb"
outputRelPath = ""
Ry = 109736.605
rbatomicweight = 85.4678
print statelabel(nState,lState)
print "Start, End, and Step of DC Field (V/cm): {}, {}, {}".format(eminvcm, emaxvcm, estepvcm)
#------------SECTION 2-----------#
#os.chdir(csstarkDirectory)
radialMatrixElementsFilename = "rMatrixElementsMRBS.dat"
#-----------SECTION 3------------#
eunit = 5.14221e11
econversionfactor = 1/(.01 * eunit)
emin, emax, estep = eminvcm*econversionfactor, emaxvcm*econversionfactor, estepvcm*econversionfactor
numesteps = (emax-emin)/estep
#------------SECTION 4-----------#
mystates, mystatesFS, mystatesFSmj = getMyStates(nState,lState,maxL,QDmargin)
def myn(index):
return mystatesFS[index,0]
def myl(index):
return mystatesFS[index,1]
def myj(index):
return mystatesFS[index,2]
def mymj(index):
return mystatesFSmj[index,3]
np.savetxt("mystatesFS.dat",mystatesFS,fmt=['%5i']*3)
np.savetxt("mystatesFSmj.dat",mystatesFSmj,fmt=['%5i']*4)
#----------------<psi'|r|psi> Section---------------#
csRadialMatrixElement = np.zeros((mystates.shape[0],mystates.shape[0]))
if (not loadpreviousrmatrix):
print "Calculating <psi'|r|psi> matrix elements..."
for i, state1 in enumerate(mystates):
for j, state2 in enumerate(mystates):
if (state2[1] != state1[1]+1 and state2[1] != state1[1]-1):
csRadialMatrixElement[i,j] = 0
else:
#print " ...for n={}, l={}, np={}, lp={}".format(state1[0],state1[1],state2[0],state2[1])
#print "{} {} {} {}".format(state1[0],state1[1],state2[0],state2[1])
csRadialMatrixElement[i,j] = rme(state1[0],state1[1],state2[0],state2[1])
#print " result: {}".format(csRadialMatrixElement[i,j])
np.savetxt(radialMatrixElementsFilename, csRadialMatrixElement)
csRadialMatrixElement = np.loadtxt(radialMatrixElementsFilename)
#-----------------Zero-field Hamiltonian----------#
def H0(mj):
diagonal = np.zeros(len(mystatesFS))
for i in range(0,len(diagonal)):
if (abs(mj+.5)<=myj(i)+.5):
diagonal[i] = zeroFieldEnergy(myn(i),myl(i),myj(i),atomicnumber)
return np.diag(diagonal)
#-----------------Stark Hamiltonian---------------#
csRadialMatrixElementsFS = {}
for i, state1 in enumerate(mystates):
for k, state2 in enumerate(mystates):
csRadialMatrixElementsFS[twostatelabel(state1[0],state1[1],state2[0],state2[1])] = csRadialMatrixElement[i,k]
'''print "Clebsch-Gordan coeff test for: (3/2 1 5/2)"
print " (3/2 0 3/2)\n"
print "Using Josh's code: {}".format(clebsch(3/2,1,5/2,3/2,0,3/2))
print "Using QuTip: {}".format(qut.clebsch(3/2,1,5/2,3/2,0,3/2))
quit()'''
def starkMatrixElement(i,k,mjmp5):
n = mystatesFS[i,0]
l = mystatesFS[i,1]
j = mystatesFS[i,2]+.5
np = mystatesFS[k,0]
lp = mystatesFS[k,1]
jp = mystatesFS[k,2]+.5
mj = mjmp5 + 0.5
angularMatrixElement = 0
if (abs(mj)<=j and abs(mj)<=jp and (lp == l-1)):
ms = -0.5
if (sqrt((l**2-(mj-ms)**2)/((2*l+1)*(2*l-1))) != 0):
angularMatrixElement += clebsch(l,0.5,j,mj-ms,ms,mj)*clebsch(lp,0.5,jp,mj-ms,ms,mj)*sqrt((l**2-(mj-ms)**2)/((2*l+1)*(2*l-1)))
ms = 0.5
if (sqrt((l**2-(mj-ms)**2)/((2*l+1)*(2*l-1))) != 0):
angularMatrixElement += clebsch(l,0.5,j,mj-ms,ms,mj)*clebsch(lp,0.5,jp,mj-ms,ms,mj)*sqrt((l**2-(mj-ms)**2)/((2*l+1)*(2*l-1)))
if (abs(mj)<=j and abs(mj)<=jp and (lp == l+1)):
ms = -0.5
if sqrt(((l+1)**2-(mj-ms)**2)/((2*l+3)*(2*l+1))) != 0:
angularMatrixElement += clebsch(l,0.5,j,mj-ms,ms,mj)*clebsch(lp,0.5,jp,mj-ms,ms,mj)*sqrt(((l+1)**2-(mj-ms)**2)/((2*l+3)*(2*l+1)))
ms = 0.5
if sqrt(((l+1)**2-(mj-ms)**2)/((2*l+3)*(2*l+1))) != 0:
angularMatrixElement += clebsch(l,0.5,j,mj-ms,ms,mj)*clebsch(lp,0.5,jp,mj-ms,ms,mj)*sqrt(((l+1)**2-(mj-ms)**2)/((2*l+3)*(2*l+1)))
if (abs(mj)>j or abs(mj)>jp or (lp != l+1 and lp != l-1)):
return 0
else:
return angularMatrixElement*csRadialMatrixElementsFS[twostatelabel(n,l,np,lp)]
def StarkMatrix(mj):
mat = np.zeros((len(mystatesFS),len(mystatesFS)),dtype=np.float)
for i in range(0,len(mystatesFS)):
for k in range(0,len(mystatesFS)):
if (abs(mj+.5)<= myj(i)+.5 and abs(mj+.5)<= myj(k)+.5 and (myl(i) == myl(k)+1 or myl(i) == myl(k)-1)):
sme = starkMatrixElement(i,k,mj)
if (not isnan(sme)):
mat[i,k] = sme
return mat
# TO DO...
#Rotation matrix
#rm = rotmat(0,mystatesFS)
#print "First row of rotation matrix for {}\n".format(0)
#print "State: {}".format(mystatesFS[0])
np.set_printoptions(threshold='nan')
#print np.array_str(rm[0,0:15])
#Calculating Hamiltonian
print "Calculating zero-AC-field Hamiltonian for mj={}...".format(0+0.5)
HstarkOverE = StarkMatrix(0)
HzeroField = H0(0)
ourstate = find_state([nState,lState,lState],mystatesFS)
#print HstarkOverE[find_state([82,4,3,-4],mystatesFS)]
#time-independent part of Hamiltonian
def Ham(e):
return HzeroField + e*HstarkOverE
StarkEnergies = np.array([])
for i, e in enumerate(np.arange(emin,emax+estep,estep)):
zeromat = np.zeros((len(mystatesFS),len(mystatesFS)))
print "Calculating Stark matrix for e={} V/cm".format(e/econversionfactor)
print "Stark dimensions: {}x{}, {} elements.".format(len(mystatesFS),len(mystatesFS),pow(len(mystatesFS),2))
start = time.time()
fm = Ham(e).astype(np.float64)
finish = time.time()
print "Finished calculating matrix. Time elapsed: {} minutes\n".format((finish-start)/60)
print "Diagonalizing Floquet matrix for e={} V/cm".format(e/econversionfactor)
start = time.time()
if (exportVecs and i==vecnum):
val, vecs = sp.linalg.eigh(fm, overwrite_a=True, eigvals_only=False)
lenvecs = len(vecs[0])
format = ['%1.10e'] * lenvecs
if (cluster != 0):
np.savetxt("EVec_{}_DCfield{}.{}.dat".format(statelabel(nState,lState),e,cluster),vecs, fmt=format)
else:
np.savetxt("EVec_{}_DCfield{}.dat".format(statelabel(nState,lState),e),vecs, fmt=format)
else:
val = sp.linalg.eigh(fm, overwrite_a=True, eigvals_only=True)
finish = time.time()
print "Finished diagonalizing matrix. Time elapsed: {} minutes\n".format((finish-start)/60)
del fm
values = np.append(e/econversionfactor,val)
lenvalues = len(values)
if (len(StarkEnergies)==0):
StarkEnergies = np.reshape(values,(1,lenvalues))
else:
StarkEnergies = np.append(StarkEnergies,np.reshape(values,(1,lenvalues)),axis=0)
print "Outputting eigenvalues..."
format = ['%1.10e'] * lenvalues
if (cluster != 0):
np.savetxt("Stark_{}.{}.dat".format(statelabel(nState,lState),cluster),StarkEnergies, fmt=format)
else:
np.savetxt("Stark_{}.dat".format(statelabel(nState,lState)),StarkEnergies, fmt=format)
print "Generating graphs"
x = StarkEnergies[:,0]
for i in range(1,lenvalues,1):
plt.plot(x,StarkEnergies[:,i])
plt.show()
plt.savefig("starkenergies.png")
print "Done at {}.".format(time.strftime("%a, %d %b %Y %H:%M:%S +0000", time.gmtime()))