-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathfft_filter.cpp
176 lines (151 loc) · 5.32 KB
/
fft_filter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// _ ___ _ _____ _ _
// / |/ _ \/ | |_ _| |__ (_)_ __ __ _ ___
// | | | | | | | | | '_ \| | '_ \ / _` / __|
// | | |_| | | | | | | | | | | | | (_| \__ \.
// |_|\___/|_| |_| |_| |_|_|_| |_|\__, |___/
// |___/
//
// Copyright (c) Jonathan P Dawson 2024
// filename: fft_filter.cpp
// description:
// License: MIT
//
#include "fft_filter.h"
#include "fft.h"
#include "utils.h"
#include "cic_corrections.h"
#include <cmath>
#include <cstdio>
#include <algorithm>
#ifndef SIMULATION
#include "pico/stdlib.h"
#endif
static int16_t cic_correct(int16_t fft_bin, int16_t fft_offset, int16_t sample)
{
int16_t corrected_fft_bin = (fft_bin + fft_offset);
if(corrected_fft_bin > 127) corrected_fft_bin -= 256;
if(corrected_fft_bin < -128) corrected_fft_bin += 256;
uint16_t unsigned_fft_bin = abs(corrected_fft_bin);
int32_t adjusted_sample = ((int32_t)sample * cic_correction[unsigned_fft_bin]) >> 8;
return std::max(std::min(adjusted_sample, (int32_t)INT16_MAX), (int32_t)INT16_MIN);
}
#ifndef SIMULATION
void __not_in_flash_func(fft_filter::filter_block)(int16_t sample_real[], int16_t sample_imag[], s_filter_control &filter_control, int16_t capture[]) {
#else
void fft_filter::filter_block(int16_t sample_real[], int16_t sample_imag[], s_filter_control &filter_control, int16_t capture[]) {
#endif
// window
for (uint16_t i = 0; i < fft_size; i++) {
sample_real[i] = product(sample_real[i], window[i]);
sample_imag[i] = product(sample_imag[i], window[i]);
}
// forward FFT
fixed_fft(sample_real, sample_imag, 8);
if(filter_control.capture)
{
for (uint16_t i = 0; i < fft_size; i++) {
capture[i] = (((int32_t)capture[i]<<3) - capture[i] + rectangular_2_magnitude(sample_real[i], sample_imag[i])) >> 3;
}
}
//largest bin
int16_t peak = 0;
int16_t next_peak = 0;
uint16_t peak_bin = 0;
//DC and positive frequencies
for (uint16_t i = 0; i < (new_fft_size/2u) + 1; i++) {
//clear bins outside pass band
if(!filter_control.upper_sideband || i < filter_control.start_bin || i > filter_control.stop_bin)
{
sample_real[i] = 0;
sample_imag[i] = 0;
}
else
{
sample_real[i] = cic_correct(i, filter_control.fft_bin, sample_real[i]);
sample_imag[i] = cic_correct(i, filter_control.fft_bin, sample_imag[i]);
//capture highest and second highest peak
uint16_t magnitude = rectangular_2_magnitude(sample_real[i], sample_imag[i]);
if(magnitude > peak)
{
peak = magnitude;
peak_bin = i;
}
else if(magnitude > next_peak)
{
next_peak = magnitude;
}
}
}
//negative frequencies
for (uint16_t i = 0; i < (new_fft_size/2u)-1; i++) {
const uint16_t bin = new_fft_size/2 - i - 1;
const uint16_t new_idx = (new_fft_size/2u) + 1 + i;
if(!filter_control.lower_sideband || bin < filter_control.start_bin || bin > filter_control.stop_bin)
{
sample_real[new_idx] = 0;
sample_imag[new_idx] = 0;
}
else
{
sample_real[new_idx] = cic_correct(bin, filter_control.fft_bin, sample_real[fft_size - (new_fft_size/2u) + i + 1]);
sample_imag[new_idx] = cic_correct(bin, filter_control.fft_bin, sample_imag[fft_size - (new_fft_size/2u) + i + 1]);
//capture highest and second highest peak
uint16_t magnitude = rectangular_2_magnitude(sample_real[new_idx], sample_imag[new_idx]);
if(magnitude > peak)
{
peak = magnitude;
peak_bin = i;
}
else if(magnitude > next_peak)
{
next_peak = magnitude;
}
}
}
if(filter_control.enable_auto_notch)
{
//check for a consistent
const uint8_t confirm_threshold = 255u;
static uint8_t confirm_count = 0u;
static uint8_t last_peak_bin = 0u;
if(peak_bin == last_peak_bin && confirm_count < confirm_threshold) confirm_count++;
if(peak_bin != last_peak_bin && confirm_count > 0) confirm_count--;
last_peak_bin = peak_bin;
//remove highest bin
if((confirm_count > confirm_threshold/2u) && (peak_bin > 3u) && (peak_bin < new_fft_size-3u))
{
sample_real[peak_bin] = 0;
sample_imag[peak_bin] = 0;
sample_real[peak_bin+1] = 0;
sample_imag[peak_bin+1] = 0;
sample_real[peak_bin-1] = 0;
sample_imag[peak_bin-1] = 0;
}
}
// inverse FFT
fixed_ifft(sample_real, sample_imag, 7);
}
#ifndef SIMULATION
void __not_in_flash_func(fft_filter::process_sample)(int16_t sample_real[], int16_t sample_imag[], s_filter_control &filter_control, int16_t capture[]) {
#else
void fft_filter::process_sample(int16_t sample_real[], int16_t sample_imag[], s_filter_control &filter_control, int16_t capture[]) {
#endif
int16_t real[fft_size];
int16_t imag[fft_size];
for (uint16_t i = 0; i < (fft_size/2u); i++) {
real[i] = last_input_real[i];
imag[i] = last_input_imag[i];
real[fft_size/2u + i] = sample_real[i];
imag[fft_size/2u + i] = sample_imag[i];
last_input_real[i] = sample_real[i];
last_input_imag[i] = sample_imag[i];
}
//filter combined block
filter_block(real, imag, filter_control, capture);
for (uint16_t i = 0; i < (new_fft_size/2u); i++) {
sample_real[i] = real[i] + last_output_real[i];
sample_imag[i] = imag[i] + last_output_imag[i];
last_output_real[i] = real[new_fft_size/2u + i];
last_output_imag[i] = imag[new_fft_size/2u + i];
}
}