-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathrun.py
352 lines (313 loc) · 16.4 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import argparse
import os
import glob
import logging
import time
from setproctitle import setproctitle
import torch
import torch.optim as optim
from tensorboardX import SummaryWriter
from models.rcnn import EnhancedRCNN
from models.rcnn_transformer import EnhancedRCNN_Transformer
from models.siamese_models import SiameseModel
from models.siamese_elements import SingleSiameseCNN, SingleSiameseTextCNN, SingleSiameseRNN, SingleSiameseLSTM, SingleSiameseRCNN, SingleSiameseAttentionRNN
from models.multi_perspective_cnn import MultiPerspectiveCNN
from models.bimpm import BiMPM
from models.functions import l1_distance
from data_prepare import embedding_loader, tokenize_and_padding
from utils import get_available_gpu
MODEL_PATH = "model"
LOG_PATH = "log"
def load_latest_model(args, model_obj):
train_embed_txt = '(F)' if args.not_train_embed else '(T)'
if args.dataset != "Quora": # Chinese dataset
possible_model_name = f"{args.model_path}/{args.dataset}_{args.sampling}_{args.model}_epoch_*_{args.chinese_embed}{train_embed_txt}_{args.word_segment}.pkl"
else: # English dataset
possible_model_name = f"{args.model_path}/{args.dataset}_{args.sampling}_{args.model}_epoch_*_{train_embed_txt}.pkl"
list_of_models = glob.glob(possible_model_name)
if len(list_of_models) == 0:
logging.warning(
f'No candidate model name "{possible_model_name}" found')
exit(1)
latest_checkpoint = max(list_of_models, key=os.path.getctime)
logging.info(f"Loading the latest model: {latest_checkpoint}")
model_obj.load_state_dict(torch.load(latest_checkpoint))
def load_model(args, model_obj):
if args.load_model:
logging.info(f"Loading the assigned model: {args.load_model}")
model_obj.load_state_dict(torch.load(args.load_model))
else:
load_latest_model(args, model_obj)
def predict(args, model, tokenizer, device):
model.eval()
# zh_en = input('Chinese or English:')
if args.dataset != "Quora": # Chinese dataset
zh_en = 'c'
else: # English dataset
zh_en = 'e'
raw_sentence_1 = input('Input test setnetnce 1: ')
raw_sentence_2 = input('Input test setnetnce 2: ')
if zh_en[0].lower() == 'c': # Chinese
from ant_preprocess import stopwordslist
stopwords = stopwordslist()
sentence_1 = []
sentence_2 = []
if args.word_segment == "word":
import jieba
for c in jieba.cut(raw_sentence_1):
if c not in stopwords and c != ' ':
sentence_1.append(c)
for c in jieba.cut(raw_sentence_2):
if c not in stopwords and c != ' ':
sentence_2.append(c)
elif args.word_segment == "char":
for c in raw_sentence_1:
if c not in stopwords and c != ' ':
sentence_1.append(c)
for c in raw_sentence_2:
if c not in stopwords and c != ' ':
sentence_2.append(c)
elif zh_en[0].lower() == 'e': # English
sentence_1 = raw_sentence_1.split()
sentence_2 = raw_sentence_2.split()
sentence_1 = [sentence_1]
sentence_2 = [sentence_2]
print('Processed sentences:', sentence_1, '\n', sentence_2)
input_tensor_1, input_tensor_2 = tokenize_and_padding(
sentence_1, sentence_2, args.max_len, tokenizer, debug=True)
output = model(input_tensor_1.to(device), input_tensor_2.to(device))
print('Predict similarity:', output)
def get_model_parameters(model, trainable_only=False):
if trainable_only:
pytorch_total_params = sum(p.numel()
for p in model.parameters() if p.requires_grad)
else:
pytorch_total_params = sum(p.numel() for p in model.parameters())
return pytorch_total_params
def print_settings(args):
logging.info('Configurations:')
logging.info(f'\tDataset\t\t: {args.dataset}')
if args.dataset != "Quora": # All the Chinese dataset
logging.info(f'\t Word Segment\t: {args.word_segment}')
logging.info(f'\t Embedding\t: {args.chinese_embed}')
logging.info(f'\t Train Embedding: {not args.not_train_embed}')
logging.info(f'\tMode\t\t: {args.mode}')
logging.info(f'\tSampling\t: {args.sampling}')
if args.sampling == "balance":
logging.info(f'\t Generate train\t: {args.generate_train}')
logging.info(f'\t Generate test\t: {args.generate_test}')
logging.info(f'\tUsing Model\t: {args.model}')
logging.info(f'\tParameters:')
logging.info(f'\t Learning Rate\t: {args.lr}')
logging.info(f'\t Train Batch\t: {args.batch_size}')
logging.info(f'\t Test Batch\t: {args.test_batch_size}')
def main():
# Arguments
parser = argparse.ArgumentParser(
description='Enhanced RCNN on Sentence Similarity')
parser.add_argument('--dataset', type=str, default='Ant', metavar='dataset',
choices=['Ant', 'CCKS', 'PiPiDai', 'Quora'],
help='Chinese: Ant, CCKS; English: Quora (default: Ant)')
parser.add_argument('--mode', type=str, default='both', metavar='mode',
choices=['train', 'test', 'both', 'predict', 'submit'],
help='script mode [train/test/both/predict/submit(Ant)] (default: both)')
parser.add_argument('--sampling', type=str, default='random', metavar='mode',
# random means use original data
choices=['random', 'balance'],
help='sampling mode during training (default: random)')
parser.add_argument('--generate-train', action='store_true', default=False,
help='use generated negative samples when training (used in balance sampling)')
parser.add_argument('--generate-test', action='store_true', default=False,
help='use generated negative samples when testing (used in balance sampling)')
parser.add_argument('--model', type=str, default='ERCNN', metavar='model',
choices=['ERCNN', 'Transformer',
'SiameseCNN', 'SiameseRNN', 'SiameseLSTM', 'SiameseRCNN', 'SiameseAttentionRNN',
'MPCNN', 'BiMPM'],
help='model to use [ERCNN/Transformer/Siamese(CNN/RNN/LSTM/RCNN/AttentionRNN)] (default: ERCNN)')
parser.add_argument('--word-segment', type=str, default='char', metavar='WS',
choices=['word', 'char'],
help='chinese word split mode [word/char] (default: char)')
parser.add_argument('--chinese-embed', type=str, default='cw2vec', metavar='embed',
choices=['cw2vec', 'glyce'],
help='chinese embedding (default: cw2vec)')
parser.add_argument('--not-train-embed', action='store_true', default=False,
help='whether to freeze the embedding parameters')
parser.add_argument('--batch-size', type=int, default=256, metavar='N',
help='input batch size for training (default: 256)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--k-fold', type=int, default=10, metavar='N',
help='k-fold cross validation i.e. number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.001, metavar='N',
help='learning rate (default: 0.001)')
parser.add_argument('--beta1', type=float, default=0.9, metavar='N',
help='beta 1 for Adam optimizer (default: 0.9)')
parser.add_argument('--beta2', type=float, default=0.999, metavar='N',
help='beta 2 for Adam optimizer (default: 0.999)')
parser.add_argument('--epsilon', type=float, default=1e-08, metavar='N',
help='epsilon for Adam optimizer (default: 1e-08)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=16, metavar='N',
help='random seed (default: 16)')
parser.add_argument('--test-split', type=float, default=0.3, metavar='N',
help='test data split (default: 0.3)')
parser.add_argument('--logdir', type=str, default=LOG_PATH, metavar='path',
help='set log directory (default: ./log)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--test-interval', type=int, default=100, metavar='N',
help='how many batches to test during training')
parser.add_argument('--not-save-model', action='store_true', default=False,
help='for not saving the current model')
parser.add_argument('--load-model', type=str, default='', metavar='name',
help='load the specific model checkpoint file')
parser.add_argument('--submit-path', type=str, metavar='path:',
help='submission file path (currently for Ant dataset)')
args = parser.parse_args()
# Logging
ctime = time.localtime()
os.makedirs(args.logdir, exist_ok=True)
train_embed_txt = '(F)' if args.not_train_embed else '(T)'
if args.dataset != "Quora": # Chinese dataset
logfilename = '{}_{}_{}{}_{}_{}_{}_{}-{}_{}-{}'.format(
args.mode, args.sampling, args.chinese_embed, train_embed_txt, args.model, args.dataset, args.word_segment,
ctime.tm_mon, ctime.tm_mday, ctime.tm_hour, ctime.tm_min
)
proctitle = '{}_{}_{}'.format(
args.model, args.dataset, args.word_segment
)
else: # English dataset
logfilename = '{}_{}_{}_{}_glove{}_{}-{}_{}-{}'.format(
args.mode, args.sampling, args.dataset, args.model, train_embed_txt,
ctime.tm_mon, ctime.tm_mday, ctime.tm_hour, ctime.tm_min
)
proctitle = '{}_{}'.format(
args.model, args.dataset
)
setproctitle(proctitle) # set process name
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(name)-13s %(levelname)-8s %(message)s',
datefmt='%m-%d %H:%M',
filename=f'{args.logdir}/{logfilename}.log',
filemode='w')
console = logging.StreamHandler()
console.setLevel(logging.INFO)
formatter = logging.Formatter('%(name)-13s: %(levelname)-8s %(message)s')
console.setFormatter(formatter)
# add the handler to the root logger
logging.getLogger('').addHandler(console)
os.makedirs(f'{args.logdir}/{proctitle}_TensorBoardLog')
tbwriter = SummaryWriter(
logdir=f'{args.logdir}/{proctitle}_TensorBoardLog')
# PyTorch device configure (cuda/GPU or CPU)
use_cuda = not args.no_cuda and torch.cuda.is_available()
# not sure why this won't work
# if use_cuda:
# available_gpu = get_available_gpu(num_gpu=1)[0]
# torch.cuda.set_device(available_gpu)
device = torch.device("cuda" if use_cuda else "cpu")
logging.info(f"Use device: {device}")
if use_cuda:
logging.info("\tDevices: {}, Current Device: #{}-{}".format(
torch.cuda.device_count(), torch.cuda.current_device(), torch.cuda.get_device_name()))
logging.info('current memory allocated: {}MB'.format(
torch.cuda.memory_allocated() / 1024 ** 2))
logging.info('max memory allocated: {}MB'.format(
torch.cuda.max_memory_allocated() / 1024 ** 2))
logging.info('cached memory: {}MB'.format(
torch.cuda.memory_cached() / 1024 ** 2))
torch.manual_seed(args.seed)
# additional custom parameter
args.max_len = 48
args.max_feature = 20000
args.model_path = MODEL_PATH
print_settings(args)
tokenizer, embeddings_matrix = embedding_loader(
mode=args.word_segment, embed=args.chinese_embed, dataset=args.dataset)
# model and optimizer
logging.info("Building model...")
if args.model == "ERCNN":
model = EnhancedRCNN(
embeddings_matrix, args.max_len, freeze_embed=args.not_train_embed).to(device)
elif args.model == "Transformer":
model = EnhancedRCNN_Transformer(
embeddings_matrix, args.max_len, freeze_embed=args.not_train_embed).to(device)
elif args.model == "MPCNN":
model = MultiPerspectiveCNN(
embeddings_matrix, args.max_len, freeze_embed=args.not_train_embed).to(device)
elif args.model == "BiMPM":
model = BiMPM(
embeddings_matrix, args.max_len, freeze_embed=args.not_train_embed).to(device)
elif args.model[:7] == "Siamese":
output_size = 512
similarity_function = l1_distance
if args.model[7:] == "CNN":
# original Siamese-CNN paper
# single_model = SingleSiameseCNN(embeddings_matrix, args.max_len, output_size,
# freeze_embed=args.not_train_embed).to(device)
# use TextCNN model
single_model = SingleSiameseTextCNN(embeddings_matrix, args.max_len, output_size,
freeze_embed=args.not_train_embed).to(device)
elif args.model[7:] == "RNN":
single_model = SingleSiameseRNN(embeddings_matrix, args.max_len, output_size,
bidirectional=False, freeze_embed=args.not_train_embed).to(device)
elif args.model[7:] == "LSTM":
single_model = SingleSiameseLSTM(embeddings_matrix, args.max_len, output_size,
bidirectional=False, freeze_embed=args.not_train_embed).to(device)
elif args.model[7:] == "RCNN":
single_model = SingleSiameseRCNN(embeddings_matrix, args.max_len, output_size,
freeze_embed=args.not_train_embed).to(device)
elif args.model[7:] == "AttentionRNN":
single_model = SingleSiameseAttentionRNN(embeddings_matrix, args.max_len, output_size,
freeze_embed=args.not_train_embed).to(device)
model = SiameseModel(single_model, similarity_function,
output_size).to(device)
if use_cuda:
if torch.cuda.device_count() > 1:
logging.info('Model running on multiple GPUs ({})'.format(
torch.cuda.device_count()))
# warp model with nn.DataParallel
model = torch.nn.DataParallel(model)
else:
logging.info('Model running on single GPU')
else:
logging.info('Model running on CPU')
optimizer = optim.Adam(model.parameters(), lr=args.lr, betas=(
args.beta1, args.beta2), eps=args.epsilon)
logging.info(f'Model Complexity (Parameters):')
logging.info(f'\tAll\t\t: {get_model_parameters(model)}')
logging.info(f'\tTrainable\t: {get_model_parameters(model, True)}')
# sampling mode
if args.sampling == "random":
from random_train import train, test
elif args.sampling == "balance":
from balance_train import train
from random_train import test # use unbalancd data (raw data) to test
if args.mode == "train" or args.mode == "both":
logging.info(f"Training using {args.sampling} sampling mode...")
if args.load_model:
logging.info(f"Loading pretrained model to continue training...")
load_model(args, model)
train(args, model, tokenizer, device, optimizer, tbwriter)
if args.mode == "test" or args.mode == "both":
logging.info(f"Testing on {args.test_split*100}% data...")
if args.mode != "both":
load_model(args, model)
test(args, model, tokenizer, device)
if args.mode == "predict":
logging.info("Predicting manually...")
load_model(args, model)
predict(args, model, tokenizer, device)
if args.mode == "submit":
if args.dataset != "Ant":
logging.warning("Currently support Ant dataset only")
exit(1)
from submit import ant_submit
args.test_split = 0 # train on entire training data
# train(args, model, tokenizer, device, optimizer)
load_model(args, model) # DELETE
ant_submit(args, model, tokenizer, device)
if __name__ == "__main__":
os.makedirs(MODEL_PATH, exist_ok=True)
main()