-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscratchpad.jl
280 lines (223 loc) · 7.85 KB
/
scratchpad.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
###########
# handy fig mod code
latest_experiment_results = exp_results[1];
# modify contents of plt[:rcParams] dictionary
rc("axes",labelsize="xx-large")
title("")
f = gcf()
f[:set_dpi](100)
f[:set_size_inches](4.5,5,forward=true);
f[:savefig]("sinergia_flow.pdf", bbox_inches="tight")
f = gcf()
f[:set_dpi](100)
f[:set_size_inches](5,5,forward=true);
f[:savefig]("sinergia_flow.pdf", bbox_inches="tight")
rcdefaults() # restore default settings for matplotlib
ion() # turn interactive plots back on after reset
plt[:show]() # manually show a plot if interactive plots is off
D = get_fignums()
for i in D
plt[:figure](i)
#ylabel("test")
f[:savefig](string("figure_title_%i.pdf"), bbox_inches="tight")
end
f[:savefig]("figure_title.pdf", bbox_inches="tight")
plt[:rcParams]["axes.labelsize"]
fontsizes = ['xx-small', 'x-small', 'small', 'medium', 'large',
'x-large', 'xx-large', 'smaller', 'larger']
###########
if false
print_single_block_performance(exp_results[1].subjects_task1[9].blocks[end])
local_pre = pre(x, is_problem_1);
# Note: local_post returns a tuple where one value is 0. All comparisons to find the non zero value should use absolute comparison.
local_post = post(x, is_problem_1);
local_reward = -1
local_average_reward = 1
dw = zeros(no_pre_neurons, no_post_neurons);
dw[:,1] = learning_rate * local_pre[:] * local_post[1] * (local_reward - local_average_reward);
dw[:,2] = learning_rate * local_pre[:] * local_post[2] * (local_reward - local_average_reward);
## LLVM code
:(2 + 2) # abstract-syntax-tree
code_lowered(generic_function, (types_arg_list,))
code_typed(generic_function, (types_arg_list,))
code_llvm(generic_function, (types_arg_list,))
code_native(generic_function, (types_arg_list,))
code_typed(sort, ( Array{Float64,1}, ) )
# developing gaussian tuning curves
type plain_tc_type
no_curves :: Int;
mu
sigma
height
end
d = plain_tc_type(1, Array(Float64, (3,1)), Array(Float64, (3,1)), Array(Float64, (3,1)) );
type tc_type
no_curves :: Int;
mu :: Array{Float64, 1};
sigma :: Array{Float64, 1};
height :: Array{Float64, 1};
end
figure()
no_pre_neurons = 50;
a = Array(tc_type, no_pre_neurons);
for i=1:no_pre_neurons;
no_curves = 1;
tuning_mu = rand(Uniform(-1,1), no_curves);
tuning_sigma = ones(no_curves);
tuning_sigma *= 0.25;
tuning_height = rand(Normal(2,0.25), no_curves);
c = tc_type(no_curves, tuning_mu, tuning_sigma, tuning_height);
scatter(tuning_mu, tuning_height, c="r");
scatter(tuning_mu, tuning_sigma, c="b");
a[i] = c;
end
# fixing subjects who don't learn
for i = 1:no_subjects
restore_subject(exp_results[1].subjects_task[i,1]);
print("Subject $i, left: ", sum(w[:,1,1]), ", right: ", sum(w[:,2,1]),"\n")
end
Subject restored
Subject 1, left: 29.929715336783776, right: 14.681446176525938
Subject restored
Subject 2, left: 22.07651633118477, right: 31.45468877498815
Subject restored
Subject 3, left: 23.673822228646394, right: 27.05970223473139
Subject restored
Subject 4, left: 33.33160050234709, right: 22.84921345900872
Subject restored
Subject 5, left: 26.546413463743338, right: 26.4222037778666
Subject restored
Subject 6, left: 22.67275763527978, right: 26.929372831385127
Subject restored
Subject 7, left: 28.58124434653703, right: 25.46907869470326
Subject restored
Subject 8, left: 27.163487195103343, right: 24.24119733686835
Subject restored
Subject 9, left: 18.670667687673983, right: 32.057128550437774
Subject restored
Subject 10, left: 28.81075674459314, right: 19.680580385954322
function plot_subjects_initial_weight_distributions(subjects::Array{Subject,2}, task_id::Int=1)
(no_subjects, no_tasks) = size(subjects);
inter_subject_gap = 0.1;
lr_gap = (no_subjects+2) * inter_subject_gap;
figure()
x1 = ones(no_pre_neurons_per_task);
x2 = ones(no_pre_neurons_per_task) * lr_gap;
for i = 1:no_subjects
restore_subject(subjects[i,task_id]);
#=scatter(x1+( (i-1) * inter_subject_gap), w[:,1,1], c="b")
scatter(x2+( (i-1) * inter_subject_gap), w[:,2,1], c="g")=#
scatter( (i * x1) , w[:,1,1], c="b")
scatter( (i * x1) + 0.5, w[:,2,1], c="g")
end
end
end # end of 'false'
## check RND statistics
using Distributions
using PyPlot
include("parameters_critic_simulations.jl")
srand(random_seed+1);
global a = rand(Normal(input_baseline,input_baseline_variance), no_pre_neurons);
beta = 0.375; # easier problem
pop1 = rand(Normal(0,beta), ((int)(no_pre_neurons/2)));
beta = 0.25; # harder problem
pop2 = rand(Normal(0,beta), (int)(no_pre_neurons/2));
global b = [pop1; pop2];
global tuning_pos = a + b;
global tuning_neg = a - b;
global w_initial = rand(Uniform(0,1), (no_pre_neurons, no_post_neurons));
w = deepcopy(w_initial);
w[:,1] += -initial_weight_bias*b;
w[:,2] += initial_weight_bias*b;
global ksi = rand(Normal(0,output_noise), no_post_neurons);
figure()
x = linspace(1,length(a),length(a));
scatter(x,a, marker="o", c="g")
title("a")
mean(a)
std(a)
figure()
title("histogram of a")
PyPlot.plt.hist(a,20);
figure()
x = linspace(1,length(pop1),length(pop2));
scatter(x,pop1, marker="o", c="g")
x = linspace(length(pop1) + 1, length(pop1) + length(pop2),length(pop2));
scatter(x,pop2, marker="o", c="r")
title("b")
mean(pop1)
std(pop1)
mean(pop2)
std(pop2)
figure()
title("histogram of pop1")
PyPlot.plt.hist(pop1,20);
figure()
title("histogram of pop2")
PyPlot.plt.hist(pop2,20);
figure()
title("tuning function")
x = linspace(1,length(tuning),length(tuning));
scatter(x, tuning_pos, marker="o", c="g", label="a+b")
scatter(x, tuning_neg, marker="o", c="r", label="a-b")
legend()
mean(tuning_pos)
std(tuning_pos)
mean(tuning_neg)
std(tuning_neg)
figure()
x = linspace(1,size(w_initial,1),size(w_initial,1));
scatter(x,w_initial[:,1], marker="o", c="g", label="left") # left
scatter(x,w_initial[:,2], marker="o", c="r", label="right") # right
title("initial weights")
legend()
figure()
x = linspace(1,size(w,1),size(w,1));
title("initial weights incorporating left-right biases")
scatter(x[1:(int)(no_pre_neurons/2)],w[1:(int)(no_pre_neurons/2),1], marker="o", c="g", label="left, easy") #left, easy
scatter(x[1:(int)(no_pre_neurons/2)],w[1:(int)(no_pre_neurons/2),2], marker="o", c="r", label="right, easy") # right, easy
scatter(x[(int)(no_pre_neurons/2)+1:end],w[(int)(no_pre_neurons/2)+1:end,1], marker="o", c="y", label="left, hard") # left, hard
scatter(x[(int)(no_pre_neurons/2)+1:end],w[(int)(no_pre_neurons/2)+1:end,2], marker="o", c="k", label="right, hard") # right, hard
legend()
mean(w_initial[:,1]) # left
std(w_initial[:,1]) # left
mean(w_initial[:,2]) # right
std(w_initial[:,2]) # right
mean(w[1:(int)(no_pre_neurons/2),1]) # left, easy
std(w[1:(int)(no_pre_neurons/2),1]) # left, easy
mean(w[1:(int)(no_pre_neurons/2),2]) # right, easy
std(w[1:(int)(no_pre_neurons/2),2]) # right, easy
mean(w[(int)(no_pre_neurons/2)+1:end,1]) # left, hard
std(w[(int)(no_pre_neurons/2)+1:end,1]) # left, hard
mean(w[(int)(no_pre_neurons/2)+1:end,2]) # right, hard
std(w[(int)(no_pre_neurons/2)+1:end,2]) # right, hard
figure()
scatter(pop1, w[1:(int)(no_pre_neurons/2),1], marker="o", c="g", label="left, easy")
scatter(pop2, w[(int)(no_pre_neurons/2)+1:end,1], marker="o", c="y", label="left, hard")
scatter(pop1, w[1:(int)(no_pre_neurons/2),2], marker="o", c="r", label="right, easy")
scatter(pop2, w[(int)(no_pre_neurons/2)+1:end,2], marker="o", c="k", label="right, hard")
legend()
xlabel("tuning bias (b)")
ylabel("initial weight")
title("tuning bias (b) vs initial weight")
loop_length = no_trials_in_block * no_blocks_in_experiment;
ksi = Array(Float64,2,loop_length);
for i = 1:loop_length
ksi[:,i] = rand(Normal(0,output_noise), no_post_neurons);
end
mean(ksi[1,:])
std(ksi[1,:])
mean(ksi[2,:])
std(ksi[2,:])
maximum(ksi[1,:])
minimum(ksi[1,:])
maximum(ksi[2,:])
minimum(ksi[2,:])
median(ksi[1,:])
median(ksi[2,:])
figure()
title("histogram of left noise")
n1,bins1 = PyPlot.plt.hist(ksi[1,:]',100);
figure()
title("histogram of right noise")
n2,bins2 = PyPlot.plt.hist(ksi[2,:]',100);