-
Notifications
You must be signed in to change notification settings - Fork 0
4. How to deal with NA values in time series data?
Hyesop edited this page Jul 31, 2018
·
2 revisions
- Why do some days have
NA
values? - How do I change all these values to a numeric value?
Missing data are brought from Gangnam monitoring station between 2010-2017. It is easily noticed that there must have been a problem in Gangnam in 2012, due to unknown circumstances e.g. broken signal, functional damage.
1260 2011.9.22 pm10 work 53 NA 53 53 53 53 53 17.909
1493 2012.1.17 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
1494 2012.1.17 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
1495 2012.1.18 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
1496 2012.1.18 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
1497 2012.1.19 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
1498 2012.1.19 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
1499 2012.1.20 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
1500 2012.1.20 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
1501 2012.1.21 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
1502 2012.1.21 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
1503 2012.1.22 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
1504 2012.1.22 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
1505 2012.1.23 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
1506 2012.1.23 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
1507 2012.1.24 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
1508 2012.1.24 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
1509 2012.1.25 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
1510 2012.1.25 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
1511 2012.1.26 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
1512 2012.1.26 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
2025 2012.10.9 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
2026 2012.10.9 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
2027 2012.10.10 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
2028 2012.10.10 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
2029 2012.10.11 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
2030 2012.10.11 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
2031 2012.10.12 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
2032 2012.10.12 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
2033 2012.10.13 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
2034 2012.10.13 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
2035 2012.10.14 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
2036 2012.10.14 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
2037 2012.10.15 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
2038 2012.10.15 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
2040 2012.10.16 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
2580 2013.7.13 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
3796 2015.3.13 pm10 work 54 NA 54 54 54 54 54 -0.6
4799 2016.7.27 pm10 home 50 NA 50 50 50 50 50 15.909
4800 2016.7.27 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
4807 2016.7.31 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
4808 2016.7.31 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
4810 2016.8.1 pm10 work 9 NA 9 9 9 9 9 -21.8
5275 2017.3.22 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
5276 2017.3.22 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
5277 2017.3.23 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
5278 2017.3.23 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
5279 2017.3.24 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
5280 2017.3.24 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
5281 2017.3.25 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
5282 2017.3.25 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
5283 2017.3.26 pm10 home NA NA Inf NA NA NA #NAME? #VALUE!
5284 2017.3.26 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
5332 2017.4.19 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
5498 2017.7.11 pm10 work NA NA Inf NA NA NA #NAME? #VALUE!
Steffen Moritz has recently built a new package named imputeTS
, which is specialised on (univariate) time series imputation.
This package offers several imputation functions which is shown below:
Function | Description |
---|---|
na.interpolation | Missing Value Imputation by Interpolation |
na.kalman | Missing Value Imputation by Kalman Smoothing |
na.locf | Missing Value Imputation by Last Observation Carried Forward |
na.ma | Missing Value Imputation by Weighted Moving Average |
na.mean | Missing Value Imputation by Mean Value |
na.random | Missing Value Imputation by Random Sample |
na.remove | Remove Missing Values |
na.replace | Replace Missing Values by a Defined Value |
na.seadec | Seasonally Decomposed Missing Value Imputation |
na.seasplit | Seasonally Splitted Missing Value Imputation |
This is an overview but it is further discussed in the following manual (https://cran.r-project.org/web/packages/imputeTS/imputeTS.pdf).
Here is a table with available plots to choose from:
Function | Description |
---|---|
plotNA.distribution | Visualize Distribution of Missing Values |
plotNA.distributionBar | Visualize Distribution of Missing Values (Barplot) |
plotNA.gapsize | Visualize Distribution of NA gapsizes |
plotNA.imputations | Visualize Imputed Values |
Moritz, Steffen, and Thomas Bartz-Beielstein. "imputeTS: Time Series Missing Value Imputation in R." R Journal 9.1 (2017).