Enumerations
-The following enumerations are available globally.
- --
-
-
- --
- - - LapackError -
-- --- - ---Undocumented
- - See more ---Declaration
---Swift
-
- -public enum LapackError : Error
-
From 90f13806df94584eca412af3920d404f12db0710 Mon Sep 17 00:00:00 2001 From: Daniel Strobusch <1847260+dastrobu@users.noreply.github.com> Date: Sun, 17 Dec 2023 15:58:04 +0100 Subject: [PATCH 1/3] add docc plugin --- Package.swift | 14 ++++++++++---- 1 file changed, 10 insertions(+), 4 deletions(-) diff --git a/Package.swift b/Package.swift index d2bf1f2..d0f54e4 100644 --- a/Package.swift +++ b/Package.swift @@ -11,10 +11,16 @@ let package = Package( name: "AccelerateArray", targets: ["AccelerateArray"]), ], - dependencies: [ - // Dependencies declare other packages that this package depends on. - // .package(url: /* package url */, from: "1.0.0"), - ], + dependencies: { + // https://apple.github.io/swift-docc-plugin/documentation/swiftdoccplugin/ + var deps: [PackageDescription.Package.Dependency] = [] + #if swift(>=5.6.0) + deps.append( + .package(url: "https://github.com/apple/swift-docc-plugin", from: "1.3.0") + ) + #endif + return deps + }(), targets: [ // Targets are the basic building blocks of a package. A target can define a module or a test suite. // Targets can depend on other targets in this package, and on products in packages which this package depends From e824a3a7422cde945f633af4109602a49891a81c Mon Sep 17 00:00:00 2001 From: Daniel Strobusch <1847260+dastrobu@users.noreply.github.com> Date: Sun, 17 Dec 2023 16:22:37 +0100 Subject: [PATCH 2/3] bump to actions/checkout@v4 --- .github/workflows/docc.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/docc.yaml b/.github/workflows/docc.yaml index 549d7fe..90b4e0d 100644 --- a/.github/workflows/docc.yaml +++ b/.github/workflows/docc.yaml @@ -9,7 +9,7 @@ jobs: generate-docs: runs-on: macos-latest steps: - - uses: actions/checkout@v2 + - uses: actions/checkout@v4 - name: generate-documentation # https://apple.github.io/swift-docc-plugin/documentation/swiftdoccplugin/generating-documentation-for-hosting-online/ run: > From c738a83707bce715c518c66d7603b03fcac372ab Mon Sep 17 00:00:00 2001 From: Daniel Strobusch <1847260+dastrobu@users.noreply.github.com> Date: Sun, 17 Dec 2023 16:24:29 +0100 Subject: [PATCH 3/3] remove docs folder --- AccelerateArray.podspec | 2 +- README.md | 2 +- docs/Enums.html | 98 - docs/Enums/LapackError.html | 157 - docs/Extensions.html | 101 - docs/Extensions/Array.html | 2817 ----------------- docs/badge.svg | 28 - docs/css/highlight.css | 200 -- docs/css/jazzy.css | 348 -- .../Contents/Info.plist | 20 - .../Contents/Resources/Documents/Enums.html | 98 - .../Documents/Enums/LapackError.html | 157 - .../Resources/Documents/Extensions.html | 101 - .../Resources/Documents/Extensions/Array.html | 2817 ----------------- .../Contents/Resources/Documents/badge.svg | 28 - .../Resources/Documents/css/highlight.css | 200 -- .../Resources/Documents/css/jazzy.css | 348 -- .../Resources/Documents/img/carat.png | Bin 274 -> 0 bytes .../Contents/Resources/Documents/img/dash.png | Bin 1338 -> 0 bytes .../Contents/Resources/Documents/img/gh.png | Bin 1571 -> 0 bytes .../Contents/Resources/Documents/index.html | 119 - .../Contents/Resources/Documents/js/jazzy.js | 59 - .../Resources/Documents/js/jquery.min.js | 2 - .../Contents/Resources/Documents/search.json | 1 - .../Resources/Documents/undocumented.json | 33 - .../Contents/Resources/docSet.dsidx | Bin 28672 -> 0 bytes docs/docsets/AccelerateArray.tgz | Bin 50037 -> 0 bytes docs/img/carat.png | Bin 274 -> 0 bytes docs/img/dash.png | Bin 1338 -> 0 bytes docs/img/gh.png | Bin 1571 -> 0 bytes docs/index.html | 119 - docs/js/jazzy.js | 59 - docs/js/jquery.min.js | 2 - docs/search.json | 1 - docs/undocumented.json | 33 - 35 files changed, 2 insertions(+), 7948 deletions(-) delete mode 100644 docs/Enums.html delete mode 100644 docs/Enums/LapackError.html delete mode 100644 docs/Extensions.html delete mode 100644 docs/Extensions/Array.html delete mode 100644 docs/badge.svg delete mode 100644 docs/css/highlight.css delete mode 100644 docs/css/jazzy.css delete mode 100644 docs/docsets/AccelerateArray.docset/Contents/Info.plist delete mode 100644 docs/docsets/AccelerateArray.docset/Contents/Resources/Documents/Enums.html delete mode 100644 docs/docsets/AccelerateArray.docset/Contents/Resources/Documents/Enums/LapackError.html delete mode 100644 docs/docsets/AccelerateArray.docset/Contents/Resources/Documents/Extensions.html delete mode 100644 docs/docsets/AccelerateArray.docset/Contents/Resources/Documents/Extensions/Array.html delete mode 100644 docs/docsets/AccelerateArray.docset/Contents/Resources/Documents/badge.svg delete mode 100644 docs/docsets/AccelerateArray.docset/Contents/Resources/Documents/css/highlight.css delete mode 100644 docs/docsets/AccelerateArray.docset/Contents/Resources/Documents/css/jazzy.css delete mode 100755 docs/docsets/AccelerateArray.docset/Contents/Resources/Documents/img/carat.png delete mode 100755 docs/docsets/AccelerateArray.docset/Contents/Resources/Documents/img/dash.png delete mode 100755 docs/docsets/AccelerateArray.docset/Contents/Resources/Documents/img/gh.png delete mode 100644 docs/docsets/AccelerateArray.docset/Contents/Resources/Documents/index.html delete mode 100755 docs/docsets/AccelerateArray.docset/Contents/Resources/Documents/js/jazzy.js delete mode 100644 docs/docsets/AccelerateArray.docset/Contents/Resources/Documents/js/jquery.min.js delete mode 100644 docs/docsets/AccelerateArray.docset/Contents/Resources/Documents/search.json delete mode 100644 docs/docsets/AccelerateArray.docset/Contents/Resources/Documents/undocumented.json delete mode 100644 docs/docsets/AccelerateArray.docset/Contents/Resources/docSet.dsidx delete mode 100644 docs/docsets/AccelerateArray.tgz delete mode 100755 docs/img/carat.png delete mode 100755 docs/img/dash.png delete mode 100755 docs/img/gh.png delete mode 100644 docs/index.html delete mode 100755 docs/js/jazzy.js delete mode 100644 docs/js/jquery.min.js delete mode 100644 docs/search.json delete mode 100644 docs/undocumented.json diff --git a/AccelerateArray.podspec b/AccelerateArray.podspec index 9c7c502..af86b60 100644 --- a/AccelerateArray.podspec +++ b/AccelerateArray.podspec @@ -16,7 +16,7 @@ Pod::Spec.new do |s| # s.name = "AccelerateArray" - s.version = "0.4.0" + s.version = "0.5.0" s.summary = "Swift Array Extensions for the Apple Accelerate Framework" # This description is used to generate tags and improve search results. diff --git a/README.md b/README.md index 398c545..bb6717e 100644 --- a/README.md +++ b/README.md @@ -43,7 +43,7 @@ additional types, which can be easily built on top of this package. ```swift let package = Package( dependencies: [ - .package(url: "https://github.com/dastrobu/AccelerateArray.git", from: "0.4.0"), + .package(url: "https://github.com/dastrobu/AccelerateArray.git", from: "0.5.0"), ] ) ``` diff --git a/docs/Enums.html b/docs/Enums.html deleted file mode 100644 index a3a7af4..0000000 --- a/docs/Enums.html +++ /dev/null @@ -1,98 +0,0 @@ - - -
-AccelerateArray Docs (92% documented)
-The following enumerations are available globally.
- -
-
-
- LapackError
-
- Undocumented
- - See more -Swift
-public enum LapackError : Error
-
- AccelerateArray Docs (92% documented)
-public enum LapackError : Error
-
- Undocumented
- -
-
-
- getrf(_:)
-
- Undocumented
- -Swift
-case getrf(Int32)
-
-
-
-
- getri(_:)
-
- Undocumented
- -Swift
-case getri(Int32)
-
-
-
-
- dgesv(_:)
-
- Undocumented
- -Swift
-case dgesv(Int32)
-
- AccelerateArray Docs (92% documented)
-The following extensions are available globally.
- -
-
-
- Array
-
- Array extension employing the BLAS framework. -https://developer.apple.com/documentation/accelerate/blas
- -Float array extension
- - See more -Swift
-public extension Array where Element == Float
-
- AccelerateArray Docs (92% documented)
-public extension Array where Element == Float
-
- Array extension employing the BLAS framework. -https://developer.apple.com/documentation/accelerate/blas
- -Float array extension
- -
-
-
- scal(_:offset:)
-
- Multiplies each element of a vector by a constant. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func scal(_ alpha: Element, offset: Int = 0)
-
-
-
-
- scal(n:alpha:incX:offset:)
-
- Multiplies each element of a vector by a constant. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func scal(n: Int32, alpha: Element, incX: Int32 = 1, offset: Int = 0)
-
-
-
-
- set(_:offset:)
-
- Modifies a vector in place, setting each element to a given value. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func set(_ alpha: Element, offset: Int = 0)
-
-
-
-
- set(n:alpha:incX:offset:)
-
- Modifies a vector in place, setting each element to a given value. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func set(n: Int32, alpha: Element, incX: Int32 = 1, offset: Int = 0)
-
-
-
- n
-
- |
-
-
-
- number of items - |
-
-
- alpha
-
- |
-
-
-
- scaling factor - |
-
-
- incX
-
- |
-
-
-
- stride within x - |
-
-
- offset
-
- |
-
-
-
- offset w.r.t to the start of the array from which to start the operation - |
-
-
-
- axpby(alpha:beta:y:offsetX:offsetY:)
-
- Computes the sum of two vectors, scaling each one separately (single-precision). -On return, the contents of vector Y are replaced with the result. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func axpby(alpha: Element, beta: Element, y: inout [Element], offsetX: Int = 0, offsetY: Int = 0)
-
-
-
- alpha
-
- |
-
-
-
- scaling factor x - |
-
-
- beta
-
- |
-
-
-
- scaling factor for y - |
-
-
- offsetX
-
- |
-
-
-
- offset w.r.t to the start of the array from which to start the operation in x - |
-
-
- offsetY
-
- |
-
-
-
- offset w.r.t to the start of the array from which to start the operation in y - |
-
-
-
- axpby(n:alpha:incX:beta:y:incY:offsetX:offsetY:)
-
- Computes the sum of two vectors, scaling each one separately (single-precision). -On return, the contents of vector Y are replaced with the result. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func axpby(n: Int32, alpha: Element, incX: Int32 = 1, beta: Element, y: inout [Element], incY: Int32 = 1, offsetX: Int = 0, offsetY: Int = 0)
-
-
-
- n
-
- |
-
-
-
- number of items - |
-
-
- alpha
-
- |
-
-
-
- scaling factor x - |
-
-
- incX
-
- |
-
-
-
- stride within x - |
-
-
- beta
-
- |
-
-
-
- scaling factor for y - |
-
-
- incY
-
- |
-
-
-
- stride within y - |
-
-
- offsetX
-
- |
-
-
-
- offset w.r.t to the start of the array from which to start the operation in x - |
-
-
- offsetY
-
- |
-
-
-
- offset w.r.t to the start of the array from which to start the operation in y - |
-
-
-
- scal(_:offset:)
-
- Multiplies each element of a vector by a constant. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func scal(_ alpha: Element, offset: Int = 0)
-
-
-
-
- scal(n:alpha:incX:offset:)
-
- Multiplies each element of a vector by a constant. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func scal(n: Int32, alpha: Element, incX: Int32 = 1, offset: Int = 0)
-
-
-
-
- set(_:offset:)
-
- Modifies a vector in place, setting each element to a given value. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func set(_ alpha: Element, offset: Int = 0)
-
-
-
-
- set(n:alpha:incX:offset:)
-
- Modifies a vector in place, setting each element to a given value. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func set(n: Int32, alpha: Element, incX: Int32 = 1, offset: Int = 0)
-
-
-
- n
-
- |
-
-
-
- number of items - |
-
-
- alpha
-
- |
-
-
-
- scaling factor - |
-
-
- incX
-
- |
-
-
-
- stride within x - |
-
-
- offset
-
- |
-
-
-
- offset w.r.t to the start of the array from which to start the operation - |
-
-
-
- axpby(alpha:beta:y:offsetX:offsetY:)
-
- Computes the sum of two vectors, scaling each one separately (single-precision). -On return, the contents of vector Y are replaced with the result. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func axpby(alpha: Element, beta: Element, y: inout [Element], offsetX: Int = 0, offsetY: Int = 0)
-
-
-
- alpha
-
- |
-
-
-
- scaling factor x - |
-
-
- beta
-
- |
-
-
-
- scaling factor for y - |
-
-
- offsetX
-
- |
-
-
-
- offset w.r.t to the start of the array from which to start the operation in x - |
-
-
- offsetY
-
- |
-
-
-
- offset w.r.t to the start of the array from which to start the operation in y - |
-
-
-
- axpby(n:alpha:incX:beta:y:incY:offsetX:offsetY:)
-
- Computes the sum of two vectors, scaling each one separately (single-precision). -On return, the contents of vector Y are replaced with the result. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func axpby(n: Int32, alpha: Element, incX: Int32 = 1, beta: Element, y: inout [Element], incY: Int32 = 1, offsetX: Int = 0, offsetY: Int = 0)
-
-
-
- n
-
- |
-
-
-
- number of items - |
-
-
- alpha
-
- |
-
-
-
- scaling factor x - |
-
-
- incX
-
- |
-
-
-
- stride within x - |
-
-
- beta
-
- |
-
-
-
- scaling factor for y - |
-
-
- incY
-
- |
-
-
-
- stride within y - |
-
-
- offsetX
-
- |
-
-
-
- offset w.r.t to the start of the array from which to start the operation in x - |
-
-
- offsetY
-
- |
-
-
-
- offset w.r.t to the start of the array from which to start the operation in y - |
-
-
-
- getrf(m:n:)
-
- SGETRF computes an LU factorization of a general M-by-N matrix A -using partial pivoting with row interchanges.
- -The factorization has the form - A = P * L * U -where P is a permutation matrix, L is lower triangular with unit -diagonal elements (lower trapezoidal if m > n), and U is upper -triangular (upper trapezoidal if m < n).
- -This is the right-looking Level 3 BLAS version of the algorithm.
- -This array must be in column major storage.
- - - -Swift
-mutating func getrf(m: Int, n: Int) throws -> [Int32]
-
-
-
- m
-
- |
-
-
-
- number of rows - |
-
-
- n
-
- |
-
-
-
- number of columns - |
-
The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i).
-
-
-
- getrf(m:n:ipiv:)
-
- SGETRF computes an LU factorization of a general M-by-N matrix A -using partial pivoting with row interchanges.
- -The factorization has the form - A = P * L * U -where P is a permutation matrix, L is lower triangular with unit -diagonal elements (lower trapezoidal if m > n), and U is upper -triangular (upper trapezoidal if m < n).
- -This is the right-looking Level 3 BLAS version of the algorithm.
- -This array must be in column major storage.
- - - -Swift
-mutating func getrf(m m_: Int, n n_: Int, ipiv: inout [Int32]) throws
-
-
-
- m
-
- |
-
-
-
- number of rows - |
-
-
- n
-
- |
-
-
-
- number of columns - |
-
-
- ipiv
-
- |
-
-
-
- the pivot indices; for 1 <= i <= min(m,n), row i of the matrix was interchanged with row ipiv[i]. - |
-
-
-
- getri()
-
- SGETRI computes the inverse of a matrix using the LU factorization -computed by DGETRF.
- -This method inverts U and then computes inv(A) by solving the system -inv(A)*L = inv(U) for inv(A).
- -Swift
-mutating func getri() throws
-
-
-
-
- gesv(B:)
-
- DGESV computes the solution to a real system of linear equations - A * X = B, -where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
- -The LU decomposition with partial pivoting and row interchanges is -used to factor A as - A = P * L * U, -where P is a permutation matrix, L is unit lower triangular, and U is -upper triangular. The factored form of A is then used to solve the -system of equations A * X = B.
- -This array must be in column major storage.
- - - -Swift
-mutating func gesv(B: inout [Element]) throws
-
-
-
-
- gesv(ipiv:B:)
-
- SGESV computes the solution to a real system of linear equations - A * X = B, -where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
- -The LU decomposition with partial pivoting and row interchanges is -used to factor A as - A = P * L * U, -where P is a permutation matrix, L is unit lower triangular, and U is -upper triangular. The factored form of A is then used to solve the -system of equations A * X = B.
- -This array and B must be in column major storage.
- - - -Swift
-mutating func gesv(ipiv: inout [Int32], B: inout [Element]) throws
-
-
-
-
- gtsv(nrhs:dl:du:B:)
-
- SGTSV solves the equation
- -A*X = B,
- -where A is an n by n tridiagonal matrix, by Gaussian elimination with -partial pivoting.
- -Note that the equation A**T*X = B may be solved by interchanging the -order of the arguments DU and DL.
- -This array represents the diagonal of A.
- - - -Swift
-mutating func gtsv(nrhs: Int, dl: inout [Element], du: inout [Element], B: inout [Element]) throws
-
-
-
- nrhs
-
- |
-
-
-
- The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. - |
-
-
- dl
-
- |
-
-
-
- On entry, DL must contain the (n-1) sub-diagonal elements of A. - On exit, DL is overwritten by the (n-2) elements of the - second super-diagonal of the upper triangular matrix U from - the LU factorization of A, in DL(1), …, DL(n-2). - |
-
-
- du
-
- |
-
-
-
- On entry, DU must contain the (n-1) super-diagonal elements of A. - On exit, DU is overwritten by the (n-1) elements of the first - super-diagonal of U. - |
-
-
- B
-
- |
-
-
-
- On entry, the N by NRHS matrix of right hand side matrix B. - On exit, if no error was thrown, the N by NRHS solution matrix X. - |
-
-
-
- getrf(m:n:)
-
- DGETRF computes an LU factorization of a general M-by-N matrix A -using partial pivoting with row interchanges.
- -The factorization has the form - A = P * L * U -where P is a permutation matrix, L is lower triangular with unit -diagonal elements (lower trapezoidal if m > n), and U is upper -triangular (upper trapezoidal if m < n).
- -This is the right-looking Level 3 BLAS version of the algorithm.
- -This array must be in column major storage.
- - - -Swift
-mutating func getrf(m: Int, n: Int) throws -> [Int32]
-
-
-
- m
-
- |
-
-
-
- number of rows - |
-
-
- n
-
- |
-
-
-
- number of columns - |
-
The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i).
-
-
-
- getrf(m:n:ipiv:)
-
- DGETRF computes an LU factorization of a general M-by-N matrix A -using partial pivoting with row interchanges.
- -The factorization has the form - A = P * L * U -where P is a permutation matrix, L is lower triangular with unit -diagonal elements (lower trapezoidal if m > n), and U is upper -triangular (upper trapezoidal if m < n).
- -This is the right-looking Level 3 BLAS version of the algorithm.
- -This array must be in column major storage.
- - - -Swift
-mutating func getrf(m m_: Int, n n_: Int, ipiv: inout [Int32]) throws
-
-
-
- m
-
- |
-
-
-
- number of rows - |
-
-
- n
-
- |
-
-
-
- number of columns - |
-
-
- ipiv
-
- |
-
-
-
- the pivot indices; for 1 <= i <= min(m,n), row i of the matrix was interchanged with row ipiv[i]. - |
-
-
-
- getri()
-
- DGETRI computes the inverse of a matrix using the LU factorization -computed by DGETRF.
- -This method inverts U and then computes inv(A) by solving the system -inv(A)*L = inv(U) for inv(A).
- - - -Swift
-mutating func getri() throws
-
-
-
-
- gesv(B:)
-
- DGESV computes the solution to a real system of linear equations - A * X = B, -where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
- -The LU decomposition with partial pivoting and row interchanges is -used to factor A as - A = P * L * U, -where P is a permutation matrix, L is unit lower triangular, and U is -upper triangular. The factored form of A is then used to solve the -system of equations A * X = B.
- -This array must be in column major storage.
- - - -Swift
-mutating func gesv(B: inout [Element]) throws
-
-
-
-
- gesv(ipiv:B:)
-
- DGESV computes the solution to a real system of linear equations - A * X = B, -where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
- -The LU decomposition with partial pivoting and row interchanges is -used to factor A as - A = P * L * U, -where P is a permutation matrix, L is unit lower triangular, and U is -upper triangular. The factored form of A is then used to solve the -system of equations A * X = B.
- -This array and B must be in column major storage.
- - - -Swift
-mutating func gesv(ipiv: inout [Int32], B: inout [Element]) throws
-
-
-
-
- gtsv(nrhs:dl:du:B:)
-
- DGTSV solves the equation
- -A*X = B,
- -where A is an n by n tridiagonal matrix, by Gaussian elimination with -partial pivoting.
- -Note that the equation A**T*X = B may be solved by interchanging the -order of the arguments DU and DL.
- -This array represents the diagonal of A.
- - - -Swift
-mutating func gtsv(nrhs: Int, dl: inout [Element], du: inout [Element], B: inout [Element]) throws
-
-
-
- nrhs
-
- |
-
-
-
- The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. - |
-
-
- dl
-
- |
-
-
-
- On entry, DL must contain the (n-1) sub-diagonal elements of A. - On exit, DL is overwritten by the (n-2) elements of the - second super-diagonal of the upper triangular matrix U from - the LU factorization of A, in DL(1), …, DL(n-2). - |
-
-
- du
-
- |
-
-
-
- On entry, DU must contain the (n-1) super-diagonal elements of A. - On exit, DU is overwritten by the (n-1) elements of the first - super-diagonal of U. - |
-
-
- B
-
- |
-
-
-
- On entry, the N by NRHS matrix of right hand side matrix B. - On exit, if no error was thrown, the N by NRHS solution matrix X. - |
-
-
-
- init(start:stop:step:)
-
- Build ramped vector -https://developer.apple.com/documentation/accelerate/vdsp
- -full efficiency is currently blocked by -https://github.com/apple/swift-evolution/blob/master/proposals/0223-array-uninitialized-initializer.md
- -Swift
-init(start: Element = 0.0, stop: Element, step: Element = 1.0)
-
-
-
-
- init(start:step:n:)
-
- Build ramped vector -https://developer.apple.com/documentation/accelerate/vdsp
- -Swift
-init(start: Element = 0.0, step: Element = 1.0, n: Int)
-
-
-
-
- mtrans(m:n:)
-
- Creates a transposed matrix C from a source matrix A. -https://developer.apple.com/documentation/accelerate/vdsp
- -By default, assumes row major storage
- -Swift
-func mtrans(m: Int, n: Int) -> [Element]
-
-
-
- m
-
- |
-
-
-
- number of columns - |
-
-
- n
-
- |
-
-
-
- number of rows - |
-
-
-
- mtrans(strideA:C:strideC:m:n:)
-
- Creates a transposed matrix C from a source matrix A. -https://developer.apple.com/documentation/accelerate/vdsp
- -By default, assumes row major storage
- -Swift
-func mtrans(strideA: Int = 1, C: inout [Element], strideC: Int, m: Int, n: Int)
-
-
-
- m
-
- |
-
-
-
- number of columns - |
-
-
- n
-
- |
-
-
-
- number of rows - |
-
-
-
- mmul(B:strideB:m:n:p:)
-
- Performs an out-of-place multiplication of two matrices. -https://developer.apple.com/documentation/accelerate/vdsp
- -By default, assumes row major storage
- -Swift
-func mmul(B: [Element], strideB: Int = 1, m: Int, n: Int, p: Int) -> [Element]
-
-
-
- m
-
- |
-
-
-
- number of rows - |
-
-
- n
-
- |
-
-
-
- number of columns in B - |
-
-
- p
-
- |
-
-
-
- number of columns and number of rows in B - |
-
-
-
- mmul(strideA:B:strideB:C:strideC:m:n:p:)
-
- Performs an out-of-place multiplication of two matrices. -https://developer.apple.com/documentation/accelerate/vdsp
- -By default, assumes row major storage
- -Swift
-func mmul(strideA: Int = 1,
- B: [Element],
- strideB: Int = 1,
- C: inout [Element],
- strideC: Int = 1,
- m: Int,
- n: Int,
- p: Int)
-
-
-
- m
-
- |
-
-
-
- number of rows - |
-
-
- n
-
- |
-
-
-
- number of columns in B - |
-
-
- p
-
- |
-
-
-
- number of columns and number of rows in B - |
-
-
-
- vpoly(_:)
-
- Vector polynomial evaluation. -https://developer.apple.com/documentation/accelerate/vdsp
- -Swift
-func vpoly(_ b: [Element]) -> [Element]
-
-
-
- strideA
-
- |
-
-
-
- stride for a - |
-
-
- b
-
- |
-
-
-
- variable values - |
-
-
- strideB
-
- |
-
-
-
- stride for b - |
-
-
- c
-
- |
-
-
-
- output vector - |
-
-
- strideC
-
- |
-
-
-
- stride for c - |
-
-
-
- vpoly(strideA:b:strideB:)
-
- Vector polynomial evaluation. -https://developer.apple.com/documentation/accelerate/vdsp
- -Swift
-func vpoly(strideA: Int = 1, b: [Element], strideB: Int = 1) -> [Element]
-
-
-
- strideA
-
- |
-
-
-
- stride for a - |
-
-
- b
-
- |
-
-
-
- variable values - |
-
-
- strideB
-
- |
-
-
-
- stride for b - |
-
-
- c
-
- |
-
-
-
- output vector - |
-
-
- strideC
-
- |
-
-
-
- stride for c - |
-
-
-
- vpoly(strideA:b:strideB:c:strideC:)
-
- Vector polynomial evaluation. -https://developer.apple.com/documentation/accelerate/vdsp
- -Swift
-func vpoly(strideA: Int = 1, b: [Element], strideB: Int = 1, c: inout [Element], strideC: Int = 1)
-
-
-
- strideA
-
- |
-
-
-
- stride for a - |
-
-
- b
-
- |
-
-
-
- variable values - |
-
-
- strideB
-
- |
-
-
-
- stride for b - |
-
-
- c
-
- |
-
-
-
- output vector - |
-
-
- strideC
-
- |
-
-
-
- stride for c - |
-
-
-
- init(start:stop:step:)
-
- Build ramped vector -https://developer.apple.com/documentation/accelerate/vdsp
- -full efficiency is currently blocked by -https://github.com/apple/swift-evolution/blob/master/proposals/0223-array-uninitialized-initializer.md
- -Swift
-init(start: Element = 0.0, stop: Element, step: Element = 1.0)
-
-
-
-
- init(start:step:n:)
-
- Build ramped vector -https://developer.apple.com/documentation/accelerate/vdsp
- -Swift
-init(start: Element = 0.0, step: Element = 1.0, n: Int)
-
-
-
-
- mtrans(m:n:)
-
- Creates a transposed matrix C from a source matrix A. -https://developer.apple.com/documentation/accelerate/vdsp
- -By default, assumes row major storage
- -Swift
-func mtrans(m: Int, n: Int) -> [Element]
-
-
-
- m
-
- |
-
-
-
- number of columns - |
-
-
- n
-
- |
-
-
-
- number of rows - |
-
-
-
- mtrans(strideA:C:strideC:m:n:)
-
- Creates a transposed matrix C from a source matrix A. -https://developer.apple.com/documentation/accelerate/vdsp
- -Swift
-func mtrans(strideA: Int = 1, C: inout [Element], strideC: Int, m: Int, n: Int)
-
-
-
- m
-
- |
-
-
-
- number of columns - |
-
-
- n
-
- |
-
-
-
- number of rows - |
-
-
-
- mmul(B:strideB:m:n:p:)
-
- Performs an out-of-place multiplication of two matrices. -https://developer.apple.com/documentation/accelerate/vdsp
- -By default, assumes row major storage
- -Swift
-func mmul(B: [Element], strideB: Int = 1, m: Int, n: Int, p: Int) -> [Element]
-
-
-
- m
-
- |
-
-
-
- number of rows - |
-
-
- n
-
- |
-
-
-
- number of columns in B - |
-
-
- p
-
- |
-
-
-
- number of columns and number of rows in B - |
-
-
-
- mmul(strideA:B:strideB:C:strideC:m:n:p:)
-
- Performs an out-of-place multiplication of two matrices. -https://developer.apple.com/documentation/accelerate/vdsp
- -By default, assumes row major storage
- -Swift
-func mmul(strideA: Int = 1,
- B: [Element],
- strideB: Int = 1,
- C: inout [Element],
- strideC: Int = 1,
- m: Int,
- n: Int,
- p: Int)
-
-
-
- m
-
- |
-
-
-
- number of rows - |
-
-
- n
-
- |
-
-
-
- number of columns in B - |
-
-
- p
-
- |
-
-
-
- number of columns and number of rows in B - |
-
-
-
- vpoly(_:)
-
- Vector polynomial evaluation. -https://developer.apple.com/documentation/accelerate/vdsp
- -Swift
-func vpoly(_ b: [Element]) -> [Element]
-
-
-
- strideA
-
- |
-
-
-
- stride for a - |
-
-
- b
-
- |
-
-
-
- variable values - |
-
-
- strideB
-
- |
-
-
-
- stride for b - |
-
-
- c
-
- |
-
-
-
- output vector - |
-
-
- strideC
-
- |
-
-
-
- stride for c - |
-
-
-
- vpoly(strideA:b:strideB:)
-
- Vector polynomial evaluation. -https://developer.apple.com/documentation/accelerate/vdsp
- -Swift
-func vpoly(strideA: Int = 1, b: [Element], strideB: Int = 1) -> [Element]
-
-
-
- strideA
-
- |
-
-
-
- stride for a - |
-
-
- b
-
- |
-
-
-
- variable values - |
-
-
- strideB
-
- |
-
-
-
- stride for b - |
-
-
- c
-
- |
-
-
-
- output vector - |
-
-
- strideC
-
- |
-
-
-
- stride for c - |
-
-
-
- vpoly(strideA:b:strideB:c:strideC:)
-
- Vector polynomial evaluation. -https://developer.apple.com/documentation/accelerate/vdsp
- -Swift
-func vpoly(strideA: Int = 1, b: [Element], strideB: Int = 1, c: inout [Element], strideC: Int = 1)
-
-
-
- strideA
-
- |
-
-
-
- stride for a - |
-
-
- b
-
- |
-
-
-
- variable values - |
-
-
- strideB
-
- |
-
-
-
- stride for b - |
-
-
- c
-
- |
-
-
-
- output vector - |
-
-
- strideC
-
- |
-
-
-
- stride for c - |
-
AccelerateArray Docs (92% documented)
-The following enumerations are available globally.
- -
-
-
- LapackError
-
- Undocumented
- - See more -Swift
-public enum LapackError : Error
-
- AccelerateArray Docs (92% documented)
-public enum LapackError : Error
-
- Undocumented
- -
-
-
- getrf(_:)
-
- Undocumented
- -Swift
-case getrf(Int32)
-
-
-
-
- getri(_:)
-
- Undocumented
- -Swift
-case getri(Int32)
-
-
-
-
- dgesv(_:)
-
- Undocumented
- -Swift
-case dgesv(Int32)
-
- AccelerateArray Docs (92% documented)
-The following extensions are available globally.
- -
-
-
- Array
-
- Array extension employing the BLAS framework. -https://developer.apple.com/documentation/accelerate/blas
- -Float array extension
- - See more -Swift
-public extension Array where Element == Float
-
- AccelerateArray Docs (92% documented)
-public extension Array where Element == Float
-
- Array extension employing the BLAS framework. -https://developer.apple.com/documentation/accelerate/blas
- -Float array extension
- -
-
-
- scal(_:offset:)
-
- Multiplies each element of a vector by a constant. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func scal(_ alpha: Element, offset: Int = 0)
-
-
-
-
- scal(n:alpha:incX:offset:)
-
- Multiplies each element of a vector by a constant. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func scal(n: Int32, alpha: Element, incX: Int32 = 1, offset: Int = 0)
-
-
-
-
- set(_:offset:)
-
- Modifies a vector in place, setting each element to a given value. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func set(_ alpha: Element, offset: Int = 0)
-
-
-
-
- set(n:alpha:incX:offset:)
-
- Modifies a vector in place, setting each element to a given value. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func set(n: Int32, alpha: Element, incX: Int32 = 1, offset: Int = 0)
-
-
-
- n
-
- |
-
-
-
- number of items - |
-
-
- alpha
-
- |
-
-
-
- scaling factor - |
-
-
- incX
-
- |
-
-
-
- stride within x - |
-
-
- offset
-
- |
-
-
-
- offset w.r.t to the start of the array from which to start the operation - |
-
-
-
- axpby(alpha:beta:y:offsetX:offsetY:)
-
- Computes the sum of two vectors, scaling each one separately (single-precision). -On return, the contents of vector Y are replaced with the result. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func axpby(alpha: Element, beta: Element, y: inout [Element], offsetX: Int = 0, offsetY: Int = 0)
-
-
-
- alpha
-
- |
-
-
-
- scaling factor x - |
-
-
- beta
-
- |
-
-
-
- scaling factor for y - |
-
-
- offsetX
-
- |
-
-
-
- offset w.r.t to the start of the array from which to start the operation in x - |
-
-
- offsetY
-
- |
-
-
-
- offset w.r.t to the start of the array from which to start the operation in y - |
-
-
-
- axpby(n:alpha:incX:beta:y:incY:offsetX:offsetY:)
-
- Computes the sum of two vectors, scaling each one separately (single-precision). -On return, the contents of vector Y are replaced with the result. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func axpby(n: Int32, alpha: Element, incX: Int32 = 1, beta: Element, y: inout [Element], incY: Int32 = 1, offsetX: Int = 0, offsetY: Int = 0)
-
-
-
- n
-
- |
-
-
-
- number of items - |
-
-
- alpha
-
- |
-
-
-
- scaling factor x - |
-
-
- incX
-
- |
-
-
-
- stride within x - |
-
-
- beta
-
- |
-
-
-
- scaling factor for y - |
-
-
- incY
-
- |
-
-
-
- stride within y - |
-
-
- offsetX
-
- |
-
-
-
- offset w.r.t to the start of the array from which to start the operation in x - |
-
-
- offsetY
-
- |
-
-
-
- offset w.r.t to the start of the array from which to start the operation in y - |
-
-
-
- scal(_:offset:)
-
- Multiplies each element of a vector by a constant. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func scal(_ alpha: Element, offset: Int = 0)
-
-
-
-
- scal(n:alpha:incX:offset:)
-
- Multiplies each element of a vector by a constant. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func scal(n: Int32, alpha: Element, incX: Int32 = 1, offset: Int = 0)
-
-
-
-
- set(_:offset:)
-
- Modifies a vector in place, setting each element to a given value. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func set(_ alpha: Element, offset: Int = 0)
-
-
-
-
- set(n:alpha:incX:offset:)
-
- Modifies a vector in place, setting each element to a given value. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func set(n: Int32, alpha: Element, incX: Int32 = 1, offset: Int = 0)
-
-
-
- n
-
- |
-
-
-
- number of items - |
-
-
- alpha
-
- |
-
-
-
- scaling factor - |
-
-
- incX
-
- |
-
-
-
- stride within x - |
-
-
- offset
-
- |
-
-
-
- offset w.r.t to the start of the array from which to start the operation - |
-
-
-
- axpby(alpha:beta:y:offsetX:offsetY:)
-
- Computes the sum of two vectors, scaling each one separately (single-precision). -On return, the contents of vector Y are replaced with the result. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func axpby(alpha: Element, beta: Element, y: inout [Element], offsetX: Int = 0, offsetY: Int = 0)
-
-
-
- alpha
-
- |
-
-
-
- scaling factor x - |
-
-
- beta
-
- |
-
-
-
- scaling factor for y - |
-
-
- offsetX
-
- |
-
-
-
- offset w.r.t to the start of the array from which to start the operation in x - |
-
-
- offsetY
-
- |
-
-
-
- offset w.r.t to the start of the array from which to start the operation in y - |
-
-
-
- axpby(n:alpha:incX:beta:y:incY:offsetX:offsetY:)
-
- Computes the sum of two vectors, scaling each one separately (single-precision). -On return, the contents of vector Y are replaced with the result. -https://developer.apple.com/documentation/accelerate/blas
- -Swift
-mutating func axpby(n: Int32, alpha: Element, incX: Int32 = 1, beta: Element, y: inout [Element], incY: Int32 = 1, offsetX: Int = 0, offsetY: Int = 0)
-
-
-
- n
-
- |
-
-
-
- number of items - |
-
-
- alpha
-
- |
-
-
-
- scaling factor x - |
-
-
- incX
-
- |
-
-
-
- stride within x - |
-
-
- beta
-
- |
-
-
-
- scaling factor for y - |
-
-
- incY
-
- |
-
-
-
- stride within y - |
-
-
- offsetX
-
- |
-
-
-
- offset w.r.t to the start of the array from which to start the operation in x - |
-
-
- offsetY
-
- |
-
-
-
- offset w.r.t to the start of the array from which to start the operation in y - |
-
-
-
- getrf(m:n:)
-
- SGETRF computes an LU factorization of a general M-by-N matrix A -using partial pivoting with row interchanges.
- -The factorization has the form - A = P * L * U -where P is a permutation matrix, L is lower triangular with unit -diagonal elements (lower trapezoidal if m > n), and U is upper -triangular (upper trapezoidal if m < n).
- -This is the right-looking Level 3 BLAS version of the algorithm.
- -This array must be in column major storage.
- - - -Swift
-mutating func getrf(m: Int, n: Int) throws -> [Int32]
-
-
-
- m
-
- |
-
-
-
- number of rows - |
-
-
- n
-
- |
-
-
-
- number of columns - |
-
The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i).
-
-
-
- getrf(m:n:ipiv:)
-
- SGETRF computes an LU factorization of a general M-by-N matrix A -using partial pivoting with row interchanges.
- -The factorization has the form - A = P * L * U -where P is a permutation matrix, L is lower triangular with unit -diagonal elements (lower trapezoidal if m > n), and U is upper -triangular (upper trapezoidal if m < n).
- -This is the right-looking Level 3 BLAS version of the algorithm.
- -This array must be in column major storage.
- - - -Swift
-mutating func getrf(m m_: Int, n n_: Int, ipiv: inout [Int32]) throws
-
-
-
- m
-
- |
-
-
-
- number of rows - |
-
-
- n
-
- |
-
-
-
- number of columns - |
-
-
- ipiv
-
- |
-
-
-
- the pivot indices; for 1 <= i <= min(m,n), row i of the matrix was interchanged with row ipiv[i]. - |
-
-
-
- getri()
-
- SGETRI computes the inverse of a matrix using the LU factorization -computed by DGETRF.
- -This method inverts U and then computes inv(A) by solving the system -inv(A)*L = inv(U) for inv(A).
- -Swift
-mutating func getri() throws
-
-
-
-
- gesv(B:)
-
- DGESV computes the solution to a real system of linear equations - A * X = B, -where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
- -The LU decomposition with partial pivoting and row interchanges is -used to factor A as - A = P * L * U, -where P is a permutation matrix, L is unit lower triangular, and U is -upper triangular. The factored form of A is then used to solve the -system of equations A * X = B.
- -This array must be in column major storage.
- - - -Swift
-mutating func gesv(B: inout [Element]) throws
-
-
-
-
- gesv(ipiv:B:)
-
- SGESV computes the solution to a real system of linear equations - A * X = B, -where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
- -The LU decomposition with partial pivoting and row interchanges is -used to factor A as - A = P * L * U, -where P is a permutation matrix, L is unit lower triangular, and U is -upper triangular. The factored form of A is then used to solve the -system of equations A * X = B.
- -This array and B must be in column major storage.
- - - -Swift
-mutating func gesv(ipiv: inout [Int32], B: inout [Element]) throws
-
-
-
-
- gtsv(nrhs:dl:du:B:)
-
- SGTSV solves the equation
- -A*X = B,
- -where A is an n by n tridiagonal matrix, by Gaussian elimination with -partial pivoting.
- -Note that the equation A**T*X = B may be solved by interchanging the -order of the arguments DU and DL.
- -This array represents the diagonal of A.
- - - -Swift
-mutating func gtsv(nrhs: Int, dl: inout [Element], du: inout [Element], B: inout [Element]) throws
-
-
-
- nrhs
-
- |
-
-
-
- The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. - |
-
-
- dl
-
- |
-
-
-
- On entry, DL must contain the (n-1) sub-diagonal elements of A. - On exit, DL is overwritten by the (n-2) elements of the - second super-diagonal of the upper triangular matrix U from - the LU factorization of A, in DL(1), …, DL(n-2). - |
-
-
- du
-
- |
-
-
-
- On entry, DU must contain the (n-1) super-diagonal elements of A. - On exit, DU is overwritten by the (n-1) elements of the first - super-diagonal of U. - |
-
-
- B
-
- |
-
-
-
- On entry, the N by NRHS matrix of right hand side matrix B. - On exit, if no error was thrown, the N by NRHS solution matrix X. - |
-
-
-
- getrf(m:n:)
-
- DGETRF computes an LU factorization of a general M-by-N matrix A -using partial pivoting with row interchanges.
- -The factorization has the form - A = P * L * U -where P is a permutation matrix, L is lower triangular with unit -diagonal elements (lower trapezoidal if m > n), and U is upper -triangular (upper trapezoidal if m < n).
- -This is the right-looking Level 3 BLAS version of the algorithm.
- -This array must be in column major storage.
- - - -Swift
-mutating func getrf(m: Int, n: Int) throws -> [Int32]
-
-
-
- m
-
- |
-
-
-
- number of rows - |
-
-
- n
-
- |
-
-
-
- number of columns - |
-
The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i).
-
-
-
- getrf(m:n:ipiv:)
-
- DGETRF computes an LU factorization of a general M-by-N matrix A -using partial pivoting with row interchanges.
- -The factorization has the form - A = P * L * U -where P is a permutation matrix, L is lower triangular with unit -diagonal elements (lower trapezoidal if m > n), and U is upper -triangular (upper trapezoidal if m < n).
- -This is the right-looking Level 3 BLAS version of the algorithm.
- -This array must be in column major storage.
- - - -Swift
-mutating func getrf(m m_: Int, n n_: Int, ipiv: inout [Int32]) throws
-
-
-
- m
-
- |
-
-
-
- number of rows - |
-
-
- n
-
- |
-
-
-
- number of columns - |
-
-
- ipiv
-
- |
-
-
-
- the pivot indices; for 1 <= i <= min(m,n), row i of the matrix was interchanged with row ipiv[i]. - |
-
-
-
- getri()
-
- DGETRI computes the inverse of a matrix using the LU factorization -computed by DGETRF.
- -This method inverts U and then computes inv(A) by solving the system -inv(A)*L = inv(U) for inv(A).
- - - -Swift
-mutating func getri() throws
-
-
-
-
- gesv(B:)
-
- DGESV computes the solution to a real system of linear equations - A * X = B, -where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
- -The LU decomposition with partial pivoting and row interchanges is -used to factor A as - A = P * L * U, -where P is a permutation matrix, L is unit lower triangular, and U is -upper triangular. The factored form of A is then used to solve the -system of equations A * X = B.
- -This array must be in column major storage.
- - - -Swift
-mutating func gesv(B: inout [Element]) throws
-
-
-
-
- gesv(ipiv:B:)
-
- DGESV computes the solution to a real system of linear equations - A * X = B, -where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
- -The LU decomposition with partial pivoting and row interchanges is -used to factor A as - A = P * L * U, -where P is a permutation matrix, L is unit lower triangular, and U is -upper triangular. The factored form of A is then used to solve the -system of equations A * X = B.
- -This array and B must be in column major storage.
- - - -Swift
-mutating func gesv(ipiv: inout [Int32], B: inout [Element]) throws
-
-
-
-
- gtsv(nrhs:dl:du:B:)
-
- DGTSV solves the equation
- -A*X = B,
- -where A is an n by n tridiagonal matrix, by Gaussian elimination with -partial pivoting.
- -Note that the equation A**T*X = B may be solved by interchanging the -order of the arguments DU and DL.
- -This array represents the diagonal of A.
- - - -Swift
-mutating func gtsv(nrhs: Int, dl: inout [Element], du: inout [Element], B: inout [Element]) throws
-
-
-
- nrhs
-
- |
-
-
-
- The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. - |
-
-
- dl
-
- |
-
-
-
- On entry, DL must contain the (n-1) sub-diagonal elements of A. - On exit, DL is overwritten by the (n-2) elements of the - second super-diagonal of the upper triangular matrix U from - the LU factorization of A, in DL(1), …, DL(n-2). - |
-
-
- du
-
- |
-
-
-
- On entry, DU must contain the (n-1) super-diagonal elements of A. - On exit, DU is overwritten by the (n-1) elements of the first - super-diagonal of U. - |
-
-
- B
-
- |
-
-
-
- On entry, the N by NRHS matrix of right hand side matrix B. - On exit, if no error was thrown, the N by NRHS solution matrix X. - |
-
-
-
- init(start:stop:step:)
-
- Build ramped vector -https://developer.apple.com/documentation/accelerate/vdsp
- -full efficiency is currently blocked by -https://github.com/apple/swift-evolution/blob/master/proposals/0223-array-uninitialized-initializer.md
- -Swift
-init(start: Element = 0.0, stop: Element, step: Element = 1.0)
-
-
-
-
- init(start:step:n:)
-
- Build ramped vector -https://developer.apple.com/documentation/accelerate/vdsp
- -Swift
-init(start: Element = 0.0, step: Element = 1.0, n: Int)
-
-
-
-
- mtrans(m:n:)
-
- Creates a transposed matrix C from a source matrix A. -https://developer.apple.com/documentation/accelerate/vdsp
- -By default, assumes row major storage
- -Swift
-func mtrans(m: Int, n: Int) -> [Element]
-
-
-
- m
-
- |
-
-
-
- number of columns - |
-
-
- n
-
- |
-
-
-
- number of rows - |
-
-
-
- mtrans(strideA:C:strideC:m:n:)
-
- Creates a transposed matrix C from a source matrix A. -https://developer.apple.com/documentation/accelerate/vdsp
- -By default, assumes row major storage
- -Swift
-func mtrans(strideA: Int = 1, C: inout [Element], strideC: Int, m: Int, n: Int)
-
-
-
- m
-
- |
-
-
-
- number of columns - |
-
-
- n
-
- |
-
-
-
- number of rows - |
-
-
-
- mmul(B:strideB:m:n:p:)
-
- Performs an out-of-place multiplication of two matrices. -https://developer.apple.com/documentation/accelerate/vdsp
- -By default, assumes row major storage
- -Swift
-func mmul(B: [Element], strideB: Int = 1, m: Int, n: Int, p: Int) -> [Element]
-
-
-
- m
-
- |
-
-
-
- number of rows - |
-
-
- n
-
- |
-
-
-
- number of columns in B - |
-
-
- p
-
- |
-
-
-
- number of columns and number of rows in B - |
-
-
-
- mmul(strideA:B:strideB:C:strideC:m:n:p:)
-
- Performs an out-of-place multiplication of two matrices. -https://developer.apple.com/documentation/accelerate/vdsp
- -By default, assumes row major storage
- -Swift
-func mmul(strideA: Int = 1,
- B: [Element],
- strideB: Int = 1,
- C: inout [Element],
- strideC: Int = 1,
- m: Int,
- n: Int,
- p: Int)
-
-
-
- m
-
- |
-
-
-
- number of rows - |
-
-
- n
-
- |
-
-
-
- number of columns in B - |
-
-
- p
-
- |
-
-
-
- number of columns and number of rows in B - |
-
-
-
- vpoly(_:)
-
- Vector polynomial evaluation. -https://developer.apple.com/documentation/accelerate/vdsp
- -Swift
-func vpoly(_ b: [Element]) -> [Element]
-
-
-
- strideA
-
- |
-
-
-
- stride for a - |
-
-
- b
-
- |
-
-
-
- variable values - |
-
-
- strideB
-
- |
-
-
-
- stride for b - |
-
-
- c
-
- |
-
-
-
- output vector - |
-
-
- strideC
-
- |
-
-
-
- stride for c - |
-
-
-
- vpoly(strideA:b:strideB:)
-
- Vector polynomial evaluation. -https://developer.apple.com/documentation/accelerate/vdsp
- -Swift
-func vpoly(strideA: Int = 1, b: [Element], strideB: Int = 1) -> [Element]
-
-
-
- strideA
-
- |
-
-
-
- stride for a - |
-
-
- b
-
- |
-
-
-
- variable values - |
-
-
- strideB
-
- |
-
-
-
- stride for b - |
-
-
- c
-
- |
-
-
-
- output vector - |
-
-
- strideC
-
- |
-
-
-
- stride for c - |
-
-
-
- vpoly(strideA:b:strideB:c:strideC:)
-
- Vector polynomial evaluation. -https://developer.apple.com/documentation/accelerate/vdsp
- -Swift
-func vpoly(strideA: Int = 1, b: [Element], strideB: Int = 1, c: inout [Element], strideC: Int = 1)
-
-
-
- strideA
-
- |
-
-
-
- stride for a - |
-
-
- b
-
- |
-
-
-
- variable values - |
-
-
- strideB
-
- |
-
-
-
- stride for b - |
-
-
- c
-
- |
-
-
-
- output vector - |
-
-
- strideC
-
- |
-
-
-
- stride for c - |
-
-
-
- init(start:stop:step:)
-
- Build ramped vector -https://developer.apple.com/documentation/accelerate/vdsp
- -full efficiency is currently blocked by -https://github.com/apple/swift-evolution/blob/master/proposals/0223-array-uninitialized-initializer.md
- -Swift
-init(start: Element = 0.0, stop: Element, step: Element = 1.0)
-
-
-
-
- init(start:step:n:)
-
- Build ramped vector -https://developer.apple.com/documentation/accelerate/vdsp
- -Swift
-init(start: Element = 0.0, step: Element = 1.0, n: Int)
-
-
-
-
- mtrans(m:n:)
-
- Creates a transposed matrix C from a source matrix A. -https://developer.apple.com/documentation/accelerate/vdsp
- -By default, assumes row major storage
- -Swift
-func mtrans(m: Int, n: Int) -> [Element]
-
-
-
- m
-
- |
-
-
-
- number of columns - |
-
-
- n
-
- |
-
-
-
- number of rows - |
-
-
-
- mtrans(strideA:C:strideC:m:n:)
-
- Creates a transposed matrix C from a source matrix A. -https://developer.apple.com/documentation/accelerate/vdsp
- -Swift
-func mtrans(strideA: Int = 1, C: inout [Element], strideC: Int, m: Int, n: Int)
-
-
-
- m
-
- |
-
-
-
- number of columns - |
-
-
- n
-
- |
-
-
-
- number of rows - |
-
-
-
- mmul(B:strideB:m:n:p:)
-
- Performs an out-of-place multiplication of two matrices. -https://developer.apple.com/documentation/accelerate/vdsp
- -By default, assumes row major storage
- -Swift
-func mmul(B: [Element], strideB: Int = 1, m: Int, n: Int, p: Int) -> [Element]
-
-
-
- m
-
- |
-
-
-
- number of rows - |
-
-
- n
-
- |
-
-
-
- number of columns in B - |
-
-
- p
-
- |
-
-
-
- number of columns and number of rows in B - |
-
-
-
- mmul(strideA:B:strideB:C:strideC:m:n:p:)
-
- Performs an out-of-place multiplication of two matrices. -https://developer.apple.com/documentation/accelerate/vdsp
- -By default, assumes row major storage
- -Swift
-func mmul(strideA: Int = 1,
- B: [Element],
- strideB: Int = 1,
- C: inout [Element],
- strideC: Int = 1,
- m: Int,
- n: Int,
- p: Int)
-
-
-
- m
-
- |
-
-
-
- number of rows - |
-
-
- n
-
- |
-
-
-
- number of columns in B - |
-
-
- p
-
- |
-
-
-
- number of columns and number of rows in B - |
-
-
-
- vpoly(_:)
-
- Vector polynomial evaluation. -https://developer.apple.com/documentation/accelerate/vdsp
- -Swift
-func vpoly(_ b: [Element]) -> [Element]
-
-
-
- strideA
-
- |
-
-
-
- stride for a - |
-
-
- b
-
- |
-
-
-
- variable values - |
-
-
- strideB
-
- |
-
-
-
- stride for b - |
-
-
- c
-
- |
-
-
-
- output vector - |
-
-
- strideC
-
- |
-
-
-
- stride for c - |
-
-
-
- vpoly(strideA:b:strideB:)
-
- Vector polynomial evaluation. -https://developer.apple.com/documentation/accelerate/vdsp
- -Swift
-func vpoly(strideA: Int = 1, b: [Element], strideB: Int = 1) -> [Element]
-
-
-
- strideA
-
- |
-
-
-
- stride for a - |
-
-
- b
-
- |
-
-
-
- variable values - |
-
-
- strideB
-
- |
-
-
-
- stride for b - |
-
-
- c
-
- |
-
-
-
- output vector - |
-
-
- strideC
-
- |
-
-
-
- stride for c - |
-
-
-
- vpoly(strideA:b:strideB:c:strideC:)
-
- Vector polynomial evaluation. -https://developer.apple.com/documentation/accelerate/vdsp
- -Swift
-func vpoly(strideA: Int = 1, b: [Element], strideB: Int = 1, c: inout [Element], strideC: Int = 1)
-
-
-
- strideA
-
- |
-
-
-
- stride for a - |
-
-
- b
-
- |
-
-
-
- variable values - |
-
-
- strideB
-
- |
-
-
-
- stride for b - |
-
-
- c
-
- |
-
-
-
- output vector - |
-
-
- strideC
-
- |
-
-
-
- stride for c - |
-
AccelerateArray Docs (92% documented)
-Swift Array Extensions for the Apple Accelerate Framework.
- -The goal of this package is to provide slightly easier access to the BLAS, -LAPACK and [vDSP](https://developer.apple.com/documentation/accelerate/vdsp -of the Accelerate framework, -to apply these functions to Float and Double swift arrays.
- -Out of scope of this package are more convenient wrappers to handle arrays as matrices, which -would include storing strides, shapes and order (row/column major). This would require to add -additional types, which can be easily built on top of this package.
-(generated with DocToc)
- -(generated with DocToc)
-dependencies: [
- .package(url: "https://github.com/dastrobu/AccelerateArray.git", from: "0.3.0"),
- ],
-
-Make sure a valid deployment target is setup in the Podfile and add
-pod 'AccelerateArray', '~> 0'
-
-There are no dependencies on macOS apart from the Accelerate framework, which is installed by default. -Since Accelerate is also include din iOS and other Apple Platforms, this package should run on all Apple plattforms.
-Read the docs.
- -AccelerateArray Docs (92% documented)
-Swift Array Extensions for the Apple Accelerate Framework.
- -The goal of this package is to provide slightly easier access to the BLAS, -LAPACK and [vDSP](https://developer.apple.com/documentation/accelerate/vdsp -of the Accelerate framework, -to apply these functions to Float and Double swift arrays.
- -Out of scope of this package are more convenient wrappers to handle arrays as matrices, which -would include storing strides, shapes and order (row/column major). This would require to add -additional types, which can be easily built on top of this package.
-(generated with DocToc)
- -(generated with DocToc)
-dependencies: [
- .package(url: "https://github.com/dastrobu/AccelerateArray.git", from: "0.3.0"),
- ],
-
-Make sure a valid deployment target is setup in the Podfile and add
-pod 'AccelerateArray', '~> 0'
-
-There are no dependencies on macOS apart from the Accelerate framework, which is installed by default. -Since Accelerate is also include din iOS and other Apple Platforms, this package should run on all Apple plattforms.
-Read the docs.
- -