forked from pratikaher88/HyperSpectralRL_V2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
233 lines (184 loc) · 7.68 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
from re import L
import numpy as np
import torch
import scipy
import os
from datetime import datetime
import pandas as pd
import json
import seaborn as sns
import matplotlib.pyplot as plt
from torch import nn
from typing import Union
_str_to_activation = {
'relu': nn.ReLU(),
'tanh': nn.Tanh(),
'leaky_relu': nn.LeakyReLU(),
'sigmoid': nn.Sigmoid(),
'selu': nn.SELU(),
'softplus': nn.Softplus(),
'identity': nn.Identity(),
'softmax': nn.Softmax(),
'linear': nn.Linear(64, 64)
}
Activation = Union[str, nn.Module]
class ReplayBuffer():
def __init__(self, size=100000):
self.size = size
self.paths = []
def add_trajectories(self, paths):
self.paths.extend(paths)
self.paths = self.paths[-self.size:]
def sample_buffer_random(self, num_trajectories):
rand_idx = np.random.permutation(len(self.paths))[:num_trajectories]
return [self.paths[i] for i in rand_idx]
class DataManager():
def __init__(self, params, num_bands):
self.rl_data = None
self.dataset_type = params['dataset_type']
self.sample_ratio = params['sample_ratio']
#log data metadata
self.data_metadata = {}
self.col_count = None
self.full_row_count = None
self.sample_row_count = None
self.num_bands = num_bands
#load the data
assert self.dataset_type in ('IndianPines', 'Botswana', 'SalientObjects', 'PlasticFlakes', 'SoilMoisture', 'Foods'), f'{self.dataset_type} is not valid'
#separating out in case any of the data requires unique pre-processig
if self.dataset_type == 'IndianPines':
self.load_indian_pine_data()
elif self.dataset_type == 'Botswana':
self.load_botswana_data()
elif self.dataset_type == 'SalientObjects':
self.load_salient_objects_data()
elif self.dataset_type == 'PlasticFlakes':
self.load_plastic_flakes_data()
elif self.dataset_type == 'SoilMoisture':
self.load_soil_moisture_data()
elif self.dataset_type == 'Foods':
self.load_foods_data()
#self.x_train = None
#self.y_train = None
#self.x_test = None
#self.y_test = None
def load_indian_pine_data(self):
#hyper_path = self.data_file_path
#hyper = scipy.io.loadmat(hyper_path)['x'][:, :self.num_bands]
#hyper = np.load(hyper_path)
# randomly sample for x% of the pixels
#indices = np.random.randint(0, hyper.shape[0], int(hyper.shape[0]*self.sample_ratio))
#self.rl_data = hyper[indices, :]
#print(self.rl_data.shape)
self.rl_data = self._stack('data/indian_pines/hyperspectral_imagery')
self.data_metadata['col_count'] = self.rl_data.shape[1]
self.data_metadata['full_row_count'] = self.rl_data.shape[0]
self._sample()
def load_salient_objects_data(self):
self.rl_data = self._stack('data/salient_objects/hyperspectral_imagery')
self.data_metadata['col_count'] = self.rl_data.shape[1]
self.data_metadata['full_row_count'] = self.rl_data.shape[0]
self._sample()
#self.rl_data = np.load('')
# randomly sample for x% of the pixels
#indices = np.random.randint(0, hyper.shape[0], int(hyper.shape[0]*self.sample_ratio))
#self.rl_data = hyper[indices, :]
#print(self.rl_data.shape)
def load_plastic_flakes_data(self):
self.rl_data = self._stack('data/plastic_flakes/hyperspectral_imagery')
self.data_metadata['col_count'] = self.rl_data.shape[1]
self.data_metadata['full_row_count'] = self.rl_data.shape[0]
self._sample()
def load_botswana_data(self):
self.rl_data = scipy.io.loadmat(self.data_file_path)
#def load_salient_objects(self)
def load_soil_moisture_data(self):
self.rl_data = self._stack('data/soil_moisture/hyperspectral_imagery')
self.data_metadata['col_count'] = self.rl_data.shape[1]
self.data_metadata['full_row_count'] = self.rl_data.shape[0]
self._sample()
def load_foods_data(self):
self.rl_data = self._stack('data/foods/hyperspectral_imagery')
self.data_metadata['col_count'] = self.rl_data.shape[1]
self.data_metadata['full_row_count'] = self.rl_data.shape[0]
self._sample()
def _sample(self):
indices = np.random.randint(0, self.rl_data.shape[0], int(self.rl_data.shape[0]*self.sample_ratio))
self.rl_data = self.rl_data[indices, :]
self.data_metadata['sample_row_count'] = self.rl_data.shape[0]
def _stack(self, data_folder):
data = None
for _, _, files in os.walk(data_folder):
for idx, file in enumerate(files):
print(f'\rLoading {idx} out of {len(files)}', end='')
file_data = np.load(os.path.join(data_folder, file))
if isinstance(data, type(None)):
data = file_data
else:
data = np.vstack((data, file_data))
return data
class LogManager():
def __init__(self, params):
self.logging_df = pd.DataFrame()
self.dir_name = self._create_directory()
self.log_json('config.json', params)
def _create_directory(self):
dir_name = f'output/Run - {datetime.now()}'
os.mkdir(dir_name)
return dir_name
def log_final_data(self, band_selection_num=30):
self.log_df()
self.log_reward_plot(band_selection_num)
def log_df(self):
self.logging_df.to_csv(f'{self.dir_name}/Results.csv')
def log_json(self, file_name, params):
print(params)
with open (f'{self.dir_name}/{file_name}', 'w') as f:
json.dump(params, f)
def save_npy(self, file_name, np_array):
with open(f'{self.dir_name}/{file_name}', 'wb') as f:
np.save(f, np_array)
def log_reward_plot(self, band_selection_num):
filter_df = self.logging_df[self.logging_df['Selected Band'] == band_selection_num-1]
sns.lineplot(x='iter_num', y='Metric Next State', data=filter_df)
plt.savefig(os.path.join(self.dir_name, 'reward.png'))
def build_mlp(
input_size: int,
output_size: int,
n_layers: int,
size: int,
activation: Activation = 'tanh',
output_activation: Activation = 'identity',
):
"""
Builds a feedforward neural network
arguments:
input_placeholder: placeholder variable for the state (batch_size, input_size)
scope: variable scope of the network
n_layers: number of hidden layers
size: dimension of each hidden layer
activation: activation of each hidden layer
input_size: size of the input layer
output_size: size of the output layer
output_activation: activation of the output layer
returns:
output_placeholder: the result of a forward pass through the hidden layers + the output layer
"""
if isinstance(activation, str):
activation = _str_to_activation[activation]
if isinstance(output_activation, str):
output_activation = _str_to_activation[output_activation]
layers = []
in_size = input_size
for _ in range(n_layers):
layers.append(nn.Linear(in_size, size))
layers.append(activation)
in_size = size
layers.append(nn.Linear(in_size, output_size))
layers.append(output_activation)
return nn.Sequential(*layers)
device = 'cpu'
def from_numpy(*args, **kwargs):
return torch.from_numpy(*args, **kwargs).float().to(device)
def to_numpy(tensor):
return tensor.to('cpu').detach().numpy()