-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
288 lines (225 loc) · 10.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import torch
from torch.optim import Adam
from torch.optim.lr_scheduler import ReduceLROnPlateau
from utils.Data import DIV2KDataset, plot_data_grid
from utils.metrics import compute_accuracy, compute_loss, initialize_loss
from torchvision import transforms
from Models import Unet
from torch.utils.data import DataLoader
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
import argparse
import yaml
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parser = argparse.ArgumentParser(description='configuration file path')
parser.add_argument('--cfg', type=str, default= 'cfg_dlc.yaml',
help='path to configuration file')
args = parser.parse_args()
with open(args.cfg, 'r') as stream:
cfg = yaml.safe_load(stream)
DIV2K_PATH = cfg['DIV2K_PATH']
DEFAULT_LR = cfg['DEFAULT_LR']
DEFAULT_BS = cfg['DEFAULT_BS']
EPOCHS = cfg['EPOCHS']
LOSS_HYPERPARAMETERS = cfg['LOSS_HYPERPARAMETERS']
from_file = cfg['from_file']
MODEL_PATH = cfg['MODEL_PATH']
NAME = cfg['NAME']
# plot train and test metric along epochs
def plot_curve_error(train_mean, train_std, test_mean, test_std, x_label, y_label, title, identity=[]):
plt.figure(figsize=(10, 8))
plt.title(f'{NAME}_{title}')
alpha = 0.1
plt.plot(range(len(train_mean)), train_mean, '-', color='red', label='train')
plt.fill_between(range(len(train_mean)), train_mean - train_std, train_mean + train_std, facecolor='red',
alpha=alpha)
plt.plot(range(len(test_mean)), test_mean, '-', color='blue', label='test')
plt.fill_between(range(len(test_mean)), test_mean - test_std, test_mean + test_std, facecolor='blue', alpha=alpha)
if not identity == []:
plt.plot(range(len(identity)), identity, '--', color='green', label='identity')
plt.xlabel(x_label)
plt.ylabel(y_label)
plt.legend()
plt.tight_layout()
plt.savefig(f'{NAME}_{title}.png')
def train(model, visualize_data=False):
VGG, ACTIVATION = initialize_loss(from_file, MODEL_PATH)
optimizer = Adam(model.parameters(), lr=DEFAULT_LR)
lr_scheduler = ReduceLROnPlateau(optimizer)
transform = transforms.Compose([
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
# transforms.Resize(1020)
])
target_transform = transforms.Compose([
# transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
# transforms.Resize(2040)
])
train_ds = DIV2KDataset(dir=DIV2K_PATH, transform=transform, target_transform=target_transform)
val_ds = DIV2KDataset(dir=DIV2K_PATH, type='valid', transform=transform, target_transform=target_transform)
# test_ds = DIV2KDataset(dir=DIV2K_PATH, type='test', transform=transform, target_transform=target_transform)
train_dl = DataLoader(train_ds, batch_size=DEFAULT_BS, num_workers=4, pin_memory=True)
val_dl = DataLoader(val_ds, batch_size=DEFAULT_BS, num_workers=4, pin_memory=True)
# test_dl = DataLoader(test_ds, batch_size=DEFAULT_BS, num_workers=4, pin_memory=True)
loss_mean_train = np.zeros(EPOCHS)
loss_std_train = np.zeros(EPOCHS)
psnr_mean_train = np.zeros(EPOCHS)
psnr_std_train = np.zeros(EPOCHS)
ssim_mean_train = np.zeros(EPOCHS)
ssim_std_train = np.zeros(EPOCHS)
loss_mean_val = np.zeros(EPOCHS)
loss_std_val = np.zeros(EPOCHS)
psnr_mean_val = np.zeros(EPOCHS)
psnr_std_val = np.zeros(EPOCHS)
ssim_mean_val = np.zeros(EPOCHS)
ssim_std_val = np.zeros(EPOCHS)
best_val_loss = float('inf')
def train_epoch():
loss_epoch = []
psnr_epoch = []
ssim_epoch = []
model.train()
for index_batch, (im, target) in enumerate(train_dl):
im = im.to(device)
target = target.to(device)
# prediction
prediction = model(im)
# loss - modeified according to psnr function
loss = compute_loss(prediction, target, VGG, ACTIVATION, LOSS_HYPERPARAMETERS)
# accuracy
psnr, ssim = compute_accuracy(prediction, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_epoch.append(loss.item())
psnr_epoch.append(psnr)
ssim_epoch.append(ssim)
print(f'batch:{index_batch} | loss:{loss} | psnr:{psnr} | ssim:{ssim}')
loss_mean_epoch = np.mean(loss_epoch)
loss_std_epoch = np.std(loss_epoch)
psnr_mean_epoch = np.mean(psnr_epoch)
psnr_std_epoch = np.std(psnr_epoch)
ssim_mean_epoch = np.mean(ssim_epoch)
ssim_std_epoch = np.std(ssim_epoch)
loss = {'mean': loss_mean_epoch, 'std': loss_std_epoch}
psnr = {'mean': psnr_mean_epoch, 'std': psnr_std_epoch}
ssim = {'mean': ssim_mean_epoch, 'std': ssim_std_epoch}
return (loss, psnr, ssim)
def valid_epoch(epoch_i, return_input=False, test=False):
loss_epoch = []
psnr_epoch = []
ssim_epoch = []
model.eval()
dataloader = val_dl
# dataloader = val_dl if not test else test_dl
for index_batch, (im, target) in enumerate(dataloader):
im = im.to(device)
target = target.to(device)
# prediction
prediction = model(im)
# loss - modeified according to psnr function
loss = compute_loss(prediction, target, VGG, ACTIVATION, LOSS_HYPERPARAMETERS)
# accuracy
psnr, ssim = compute_accuracy(prediction, target)
if return_input:
# input accuracy
psnr, ssim = compute_accuracy(target, im)
loss_epoch.append(loss.item())
psnr_epoch.append(psnr)
ssim_epoch.append(ssim)
loss_mean_epoch = np.mean(loss_epoch)
loss_std_epoch = np.std(loss_epoch)
psnr_mean_epoch = np.mean(psnr_epoch)
psnr_std_epoch = np.std(psnr_epoch)
ssim_mean_epoch = np.mean(ssim_epoch)
ssim_std_epoch = np.std(ssim_epoch)
# lr_scheduler.step(loss.item())
loss = {'mean': loss_mean_epoch, 'std': loss_std_epoch}
psnr = {'mean': psnr_mean_epoch, 'std': psnr_std_epoch}
ssim = {'mean': ssim_mean_epoch, 'std': ssim_std_epoch}
return (loss, psnr, ssim)
if visualize_data:
nRow = 1
nCol = 10
index_data = np.arange(nRow * nCol) # show only first images
for index_batch, (im, target) in enumerate(train_dl):
plot_data_grid(im, index_data, nRow, nCol, 'sample from augmented batch')
plot_data_grid(target, index_data, nRow, nCol)
# ================================================================================
#
# iterations for epochs
#
# ================================================================================
for i in tqdm(range(EPOCHS)):
# ================================================================================
# training
# ================================================================================
(loss_train, psnr_train, ssim_train) = train_epoch()
print(f'Train Epoch: {i} | Loss: {loss_train} | PSNR: {psnr_train} | SSIM: {ssim_train}')
loss_mean_train[i] = loss_train['mean']
loss_std_train[i] = loss_train['std']
psnr_mean_train[i] = psnr_train['mean']
psnr_std_train[i] = psnr_train['std']
ssim_mean_train[i] = ssim_train['mean']
ssim_std_train[i] = ssim_train['std']
# ================================================================================
# testing (validation)
# ================================================================================
(loss_test, psnr_test, ssim_test) = valid_epoch(i)
print(f'Validation Epoch: {i} | Loss: {loss_test} | PSNR: {psnr_test} | SSIM: {ssim_test}')
torch.save(model.state_dict(), f'./{NAME}_last.pth')
if loss_test['mean'] < best_val_loss:
best_val_loss = loss_test['mean']
torch.save(model.state_dict(), f'./{NAME}_best.pth')
loss_mean_val[i] = loss_test['mean']
loss_std_val[i] = loss_test['std']
psnr_mean_val[i] = psnr_test['mean']
psnr_std_val[i] = psnr_test['std']
ssim_mean_val[i] = ssim_test['mean']
ssim_std_val[i] = ssim_test['std']
# loss
plot_curve_error(loss_mean_train, loss_std_train, loss_mean_val, loss_std_val, 'epoch', 'losses', f'LOSS')
# accuracy - PSNR
plot_curve_error(psnr_mean_train, psnr_std_train, psnr_mean_val, psnr_std_val, 'epoch', 'accuracy', 'PSNR')
# accuracy - SSIM
plot_curve_error(ssim_mean_train, ssim_std_train, ssim_mean_val, ssim_std_val, 'epoch', 'accuracy', 'SSIM')
if visualize_data:
nRow = 2
nCol = 12
index_data = np.arange(0, nRow * nCol) # show only first images
originals_train_list = []
blurry_train_list = []
for idx in index_data:
originals_train, blurry_train = train_ds[idx]
originals_train = originals_train[0]
blurry_train = blurry_train[0]
originals_train_list.append(originals_train)
blurry_train_list.append(blurry_train)
originals_train = torch.tensor(np.stack(originals_train_list, 0))
blurry_train = torch.tensor(np.stack(blurry_train_list, 0))
prediction_train = model(blurry_train.unsqueeze(dim=1).to(device))
plot_data_grid(originals_train, index_data, nRow, nCol, title='original size images, train')
plot_data_grid(blurry_train, index_data, nRow, nCol, title='input images, train')
plot_data_grid(prediction_train, index_data, nRow, nCol, title='output images, train')
nRow = 2
nCol = 10
originals_test_list = []
blurry_test_list = []
for idx in index_data:
originals_test, blurry_test = val_ds[idx]
originals_test = originals_test[0]
blurry_test = blurry_test[0]
originals_test_list.append(originals_test)
blurry_test_list.append(blurry_test)
originals_test = torch.tensor(np.stack(originals_test_list, 0))
blurry_test = torch.tensor(np.stack(blurry_test_list, 0))
prediction_test = model(blurry_test.unsqueeze(dim=1).to(device))
plot_data_grid(originals_test, index_data, nRow, nCol, title='original size images, test')
plot_data_grid(blurry_test, index_data, nRow, nCol, title='input images, test')
plot_data_grid(prediction_test, index_data, nRow, nCol, title='output images, test')
(loss_test, psnr_test, ssim_test) = valid_epoch(0, test=True)
print('Test PSNR: ', psnr_test['mean'])
print('Test SSIM: ', ssim_test['mean'])
if __name__ == '__main__':
model = Unet().to(device)
train(model)