-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmcts_search.py
171 lines (141 loc) · 5.93 KB
/
mcts_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import copy
import math
import random
import misc.tree as tree
import misc.utils as utils
from game.breakthrough import Breakthrough
C = math.sqrt(2)
class NodeLabel:
def __init__(self, moves):
self.moves = moves
self.len = len(self.moves)
self.n = 0
self.q = [utils.Avg() for _ in range(self.len)]
return
class Search:
# -------------- Simple evaluation functions -----------------------
@staticmethod
def playout_policy_0(game):
# Select a move uniformly at random.
return random.choice(game.generate())
def playout_policy_1(self, game):
# Play a capture move, if one exists, otherwise a random move.
capture_moves, moves = [], game.generate()
player = game.get_to_move()
for m in moves:
if m[2] != game.get_board().NoPce:
capture_moves.append(m)
return random.choice(capture_moves) if capture_moves else random.choice(moves)
def playout_policy_2(self, game: Breakthrough):
# TODO: Test
capture_moves, moves = [], game.generate(shuffle=True)
for m in moves:
if m[2] != Breakthrough.Board.NoPce:
capture_moves.append(m)
board = game.get_board()
move_forward_moves = []
for m in moves:
if m[2] == Breakthrough.Board.NoPce and m[1] - m[0] == board.d_n:
move_forward_moves.append(m)
# Sort move forward, first the ones that are closer to the end of the board
# move_forward_moves.sort(key=lambda x: x[1])
move_towards_center_moves = []
column_number = board.cols()
half_board_length = column_number // 2
for m in moves:
if board.col(m[0]) <= half_board_length and half_board_length - 1 <= board.col(m[1]) <= half_board_length + 1:
move_towards_center_moves.append(m)
elif board.col(m[0]) >= half_board_length and half_board_length - 1 <= board.col(m[1]) <= half_board_length + 1:
move_towards_center_moves.append(m)
# Sort move towards center, first the ones that are further away from the center
# move_towards_center_moves.sort(key=lambda x: abs(board.col(x[0]) - half_board_length))
if capture_moves:
return capture_moves[0]
if move_forward_moves:
return move_forward_moves[0]
if move_towards_center_moves:
return move_towards_center_moves[0]
return moves[0]
# -------------- Methods -----------------------
def __init__(self, abort_checker, params):
self._abort_checker = abort_checker
self._params = params
self._tree = None
eval_level = self._params.get('eval', 0)
if eval_level == 2:
self._playout_policy = self.playout_policy_2
elif eval_level == 1:
self._playout_policy = self.playout_policy_1
else:
self._playout_policy = self.playout_policy_0
def best_move(self, game):
def display(depth, label, parent_label, i):
for _ in range(depth):
print(' ', end='')
if parent_label is not None:
print(parent_label.moves[i], parent_label.q[i].n, parent_label.q[i].avg, end=': ')
print(label.n)
return
def select(node_id):
def uct(_node_id, move_index):
node_label = self._tree.node_label(_node_id)
if node_label.q[move_index].n == 0:
return utils.Infinity
return node_label.q[move_index].avg + C * math.sqrt(math.log(node_label.n) / node_label.q[move_index].n)
node_label = self._tree.node_label(node_id)
max_i = utils.argmax(node_id, len(node_label.moves), uct)
return max_i, node_label.moves[max_i]
def playout(game):
g = copy.deepcopy(game)
player = g.get_to_move()
while not g.is_terminal():
move = self._playout_policy(g)
g.make(move)
return -1.0 if g.get_to_move() == player else 1.0
def expand(node_id):
node_label = NodeLabel(game.generate(True))
if node_id is None:
node_id = self._tree.add_root(node_label)
else:
node_id = self._tree.add_child(node_id, node_label)
return node_id
def backup_update(node_id, i, value):
label = self._tree.node_label(node_id)
label.n += 1
label.q[i].add(value)
return
def traverse(depth, node_id, parent_id):
if node_id is None:
value = playout(game)
expand(parent_id)
else:
if game.is_terminal():
value = -1.0 # Loss for player to move.
else:
i, move = select(node_id)
game.make(move)
value = -traverse(depth + 1, self._tree.child(node_id, i), node_id)
game.retract(move)
backup_update(node_id, i, value)
return value
def simulate():
traverse(0, self._tree.root(), None)
def visits(q, i):
return q[i].n
self._abort_checker.reset()
self._tree = tree.Tree()
nodes = 0
num_simulations = 0
while True:
simulate()
num_simulations += 1
if self._abort_checker.do_abort(num_simulations, nodes):
break
if self._tree.root() is None:
expand(self._tree.root())
node_label = self._tree.node_label(self._tree.root())
max_i = utils.argmax(node_label.q, len(node_label.q), visits)
if self._params.get('verbose', 0) > 0:
print(num_simulations, max_i, node_label.q)
# tree.depth_first_traversal(self._tree, self._tree.root(), 0, display) # For debugging purposes.
return node_label.moves[max_i]