-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
loose dependencies, update notebooks, update code to use newest featu…
…res, black + flake
- Loading branch information
1 parent
ed5b204
commit 9d872b6
Showing
31 changed files
with
5,400 additions
and
5,447 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,179 +1,165 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"Unzip datasets and prepare data:" | ||
], | ||
"metadata": { | ||
"collapsed": false | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"\n", | ||
"import seaborn as sns\n", | ||
"from imblearn.metrics import geometric_mean_score\n", | ||
"from sklearn.model_selection import cross_val_score, ShuffleSplit\n", | ||
"from sklearn.model_selection import train_test_split\n", | ||
"from sklearn.neighbors import KNeighborsClassifier\n", | ||
"from sklearn.pipeline import make_pipeline\n", | ||
"from sklearn.preprocessing import StandardScaler\n", | ||
"\n", | ||
"from multi_imbalance.datasets import load_datasets\n", | ||
"from multi_imbalance.ensemble.soup_bagging import SOUPBagging\n", | ||
"from multi_imbalance.utils.data import load_arff_dataset\n", | ||
"from multi_imbalance.utils.min_int_maj import maj_int_min\n", | ||
"\n", | ||
"%matplotlib inline\n", | ||
"sns.set_style(\"darkgrid\")" | ||
], | ||
"metadata": { | ||
"collapsed": false, | ||
"pycharm": { | ||
"name": "#%%\n" | ||
} | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[[0.49 0.29 0.48 0.5 0.56 0.24 0.35]\n", | ||
" [0.07 0.4 0.48 0.5 0.54 0.35 0.44]\n", | ||
" [0.56 0.4 0.48 0.5 0.49 0.37 0.46]\n", | ||
" [0.59 0.49 0.48 0.5 0.52 0.45 0.36]\n", | ||
" [0.23 0.32 0.48 0.5 0.55 0.25 0.35]]\n", | ||
"[0 0 0 0 0]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"dataset = load_datasets()[\"new_ecoli\"]\n", | ||
"\n", | ||
"X, y = dataset.data, dataset.target\n", | ||
"print(X[:5])\n", | ||
"print(y[:5])" | ||
], | ||
"metadata": { | ||
"collapsed": false, | ||
"pycharm": { | ||
"name": "#%%\n" | ||
} | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"outputs": [], | ||
"source": [ | ||
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)" | ||
], | ||
"metadata": { | ||
"collapsed": false, | ||
"pycharm": { | ||
"name": "#%%\n" | ||
} | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": "0.7550748879971014" | ||
}, | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"clf = KNeighborsClassifier()\n", | ||
"vote_classifier = SOUPBagging(\n", | ||
" clf, n_classifiers=50, maj_int_min=maj_int_min[\"new_ecoli\"]\n", | ||
")\n", | ||
"vote_classifier.fit(X_train, y_train)\n", | ||
"y_pred = vote_classifier.predict(X_test)\n", | ||
"geometric_mean_score(y_test, y_pred, correction=0.001)" | ||
], | ||
"metadata": { | ||
"collapsed": false, | ||
"pycharm": { | ||
"name": "#%%\n" | ||
} | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"/home/plutasnyy/anaconda3/envs/multi-imbalance/lib/python3.7/site-packages/sklearn/base.py:197: FutureWarning: From version 0.24, get_params will raise an AttributeError if a parameter cannot be retrieved as an instance attribute. Previously it would return None.\n", | ||
" FutureWarning)\n", | ||
"/home/plutasnyy/anaconda3/envs/multi-imbalance/lib/python3.7/site-packages/sklearn/base.py:197: FutureWarning: From version 0.24, get_params will raise an AttributeError if a parameter cannot be retrieved as an instance attribute. Previously it would return None.\n", | ||
" FutureWarning)\n", | ||
"/home/plutasnyy/anaconda3/envs/multi-imbalance/lib/python3.7/site-packages/sklearn/base.py:197: FutureWarning: From version 0.24, get_params will raise an AttributeError if a parameter cannot be retrieved as an instance attribute. Previously it would return None.\n", | ||
" FutureWarning)\n", | ||
"/home/plutasnyy/anaconda3/envs/multi-imbalance/lib/python3.7/site-packages/sklearn/base.py:197: FutureWarning: From version 0.24, get_params will raise an AttributeError if a parameter cannot be retrieved as an instance attribute. Previously it would return None.\n", | ||
" FutureWarning)\n", | ||
"/home/plutasnyy/anaconda3/envs/multi-imbalance/lib/python3.7/site-packages/sklearn/base.py:197: FutureWarning: From version 0.24, get_params will raise an AttributeError if a parameter cannot be retrieved as an instance attribute. Previously it would return None.\n", | ||
" FutureWarning)\n" | ||
] | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"source": [ | ||
"Unzip datasets and prepare data:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": { | ||
"collapsed": false, | ||
"pycharm": { | ||
"name": "#%%\n" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"\n", | ||
"import seaborn as sns\n", | ||
"from imblearn.metrics import geometric_mean_score\n", | ||
"from sklearn.model_selection import cross_val_score, ShuffleSplit\n", | ||
"from sklearn.model_selection import train_test_split\n", | ||
"from sklearn.neighbors import KNeighborsClassifier\n", | ||
"from sklearn.pipeline import make_pipeline\n", | ||
"from sklearn.preprocessing import StandardScaler\n", | ||
"\n", | ||
"from multi_imbalance.datasets import load_datasets\n", | ||
"from multi_imbalance.ensemble.soup_bagging import SOUPBagging\n", | ||
"from multi_imbalance.utils.data import load_arff_dataset\n", | ||
"from multi_imbalance.utils.min_int_maj import maj_int_min\n", | ||
"\n", | ||
"%matplotlib inline\n", | ||
"sns.set_style(\"darkgrid\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": { | ||
"collapsed": false, | ||
"pycharm": { | ||
"name": "#%%\n" | ||
} | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[[0.49 0.29 0.48 0.5 0.56 0.24 0.35]\n", | ||
" [0.07 0.4 0.48 0.5 0.54 0.35 0.44]\n", | ||
" [0.56 0.4 0.48 0.5 0.49 0.37 0.46]\n", | ||
" [0.59 0.49 0.48 0.5 0.52 0.45 0.36]\n", | ||
" [0.23 0.32 0.48 0.5 0.55 0.25 0.35]]\n", | ||
"[0 0 0 0 0]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"dataset = load_datasets()[\"new_ecoli\"]\n", | ||
"\n", | ||
"X, y = dataset.data, dataset.target\n", | ||
"print(X[:5])\n", | ||
"print(y[:5])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": { | ||
"collapsed": false, | ||
"pycharm": { | ||
"name": "#%%\n" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": { | ||
"collapsed": false, | ||
"pycharm": { | ||
"name": "#%%\n" | ||
} | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"0.7784345944274128" | ||
] | ||
}, | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"clf = KNeighborsClassifier()\n", | ||
"vote_classifier = SOUPBagging(\n", | ||
" clf, n_classifiers=50, maj_int_min=maj_int_min[\"new_ecoli\"]\n", | ||
")\n", | ||
"vote_classifier.fit(X_train, y_train)\n", | ||
"y_pred = vote_classifier.predict(X_test)\n", | ||
"geometric_mean_score(y_test, y_pred, correction=0.001)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": { | ||
"collapsed": false, | ||
"pycharm": { | ||
"name": "#%%\n" | ||
} | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[0.85148515 0.8019802 0.89108911 0.84158416 0.86138614]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"X, y = load_arff_dataset(f\"{os.getcwd()}/../../data/arff/new_ecoli.arff\")\n", | ||
"clf = make_pipeline(StandardScaler(), SOUPBagging())\n", | ||
"cv = ShuffleSplit(n_splits=5, test_size=0.3, random_state=0)\n", | ||
"print(cross_val_score(clf, X, y, cv=cv))" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.2" | ||
} | ||
}, | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[0.85148515 0.8019802 0.89108911 0.84158416 0.86138614]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"X, y = load_arff_dataset(f\"{os.getcwd()}/../../data/arff/new_ecoli.arff\")\n", | ||
"clf = make_pipeline(StandardScaler(), SOUPBagging())\n", | ||
"cv = ShuffleSplit(n_splits=5, test_size=0.3, random_state=0)\n", | ||
"print(cross_val_score(clf, X, y, cv=cv))" | ||
], | ||
"metadata": { | ||
"collapsed": false, | ||
"pycharm": { | ||
"name": "#%%\n" | ||
} | ||
} | ||
} | ||
], | ||
"metadata": { | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 2 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython2", | ||
"version": "2.7.6" | ||
}, | ||
"kernelspec": { | ||
"name": "python3", | ||
"language": "python", | ||
"display_name": "Python 3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 0 | ||
"nbformat": 4, | ||
"nbformat_minor": 0 | ||
} |
Oops, something went wrong.