-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__main__.py
36 lines (29 loc) · 977 Bytes
/
__main__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import numpy as np
from MLP import *
# Load Data
train_inputs = np.genfromtxt('data/train_data.csv', delimiter=',')
train_labels = np.genfromtxt('data/train_labels.csv', delimiter=',')
print(train_inputs.shape)
print(train_labels.shape)
# Shuffle Data
idx = np.random.permutation(len(train_labels))
X, Y = train_inputs[idx], train_labels[idx]
X = np.expand_dims(X, axis=-1)
Y = np.expand_dims(Y, axis=-1)
# Split Data
test_size = 0.2
test_len = int(len(train_labels) * test_size)
X_test, X_train = X[:test_len], X[test_len:]
Y_test, Y_train = Y[:test_len], Y[test_len:]
# Training the Model
model = MLP(len(X[0]), 100, len(Y[0]))
model.train(X_train, Y_train, 0.1, 20)
# Testing the Model
correct = 0
for i in range(len(X_test)):
model.feed_forward(X_test[i])
pred = model.out_output
if np.argmax(pred) == np.argmax(Y_test[i]):
correct += 1
print("********************* Test Accuracy *********************")
print("Accuracy on test set:", correct/len(X_test))