Skip to content

For cifar10 ”DADA: Deep Adversarial Data Augmentation for Extremely Low Data Regime Classification“

Notifications You must be signed in to change notification settings

daixiangzi/DADA-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DADA-pytorch

For cifar10 ”DADA: Deep Adversarial Data Augmentation for Extremely Low Data Regime Classification“

Related

Origin paper:https://arxiv.org/abs/1809.00981
Official Implementation(Theano): https://github.com/SchafferZhang/DADA

Requirement

python3.5
pytorch 1.1.0
cuda8.0
torchvision
Keras

Run

python3 train.py
Default Set:config.py

Results

Best Acc

Method 400 600 800 1000
DADA 63.0 67.6 71.2 73.3
DADA_augmented 69.9 74.1 76.0 79.8

Train process of Gen img in 200 epochs(DADA)

** one row represent one class (100 fixed noise)**
image

Notice

i remove weight_norm,because it cause bad performance,when i add weight_norm.

About

For cifar10 ”DADA: Deep Adversarial Data Augmentation for Extremely Low Data Regime Classification“

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages