-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualise_data.py
285 lines (173 loc) · 11.7 KB
/
visualise_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import os
import pickle
import matplotlib.pyplot as plt
from cycler import cycler
import numpy as np
#visualisations
# [X] X=detrioration_step, y= one explanation technique - one image - 10 rates of prediction stength for each class (mark the correct class and the original prediction)
# [X] X=detrioration_step, y= each explanation technique - one image - one prediction stength for original class
# [ ] X=detrioration_step, y= each explanation technique - aggreagte images - one average of percentage of prediction stength for original class
# [X] X=detrioration_step, y= each explanation technique - aggreagte images - one testset accuracy
#"testRETEST_CIFAR-10_LIME_00000_deteriation_results.csv"
def DisplayPredictionStrengthsAcrossAllClassesForOneExplanationOneImage(explanation_name, image_i, image_results_dict,num_steps=20):
image_results = image_results_dict[explanation_name][image_i]["results"]
predicted_class = image_results_dict[explanation_name][image_i]["original_prediction"]
ground_truth_class = image_results_dict[explanation_name][image_i]["ground_truth"]
num_classes = len(image_results[0])
class_results = [ [] for i in range(num_classes) ]
detrioration_steps = list(range(0,num_steps))
for detrioration_step in detrioration_steps:
for class_i in range(num_classes):
class_results[class_i].append(image_results[detrioration_step][class_i])
fig = plt.figure()
ax1 = fig.add_subplot(111)
colormap = plt.cm.gist_ncar
ax1.set_prop_cycle(color=[colormap(i) for i in np.linspace(0, 0.9, num_classes)])
ax1.set_title('Explanation: '+explanation_name+' Image Index: '+str(image_i) + ' Original Prediction Index: '+str(predicted_class) + ' Correct Class Index: '+str(ground_truth_class))
for class_i in range(num_classes):
ax1.plot(detrioration_steps,class_results[class_i], label="Class: "+str(class_i))
plt.legend(loc='upper right')
plt.show()
def DisplayPredictionStrengthOfPredicitedClassForAllExplanationOneImage(explanation_names, image_i, image_results_dict,num_steps=20):
explanation_results = {}
for explanation_name in explanation_names:
explanation_results[explanation_name] = []
image_results = image_results_dict[explanation_name][image_i]["results"]
predicted_class = image_results_dict[explanation_name][image_i]["original_prediction"]
ground_truth_class = image_results_dict[explanation_name][image_i]["ground_truth"]
num_classes = len(image_results[0])
detrioration_steps = list(range(0,num_steps))
for detrioration_step in detrioration_steps:
explanation_results[explanation_name].append(image_results[detrioration_step][predicted_class])
fig = plt.figure()
ax1 = fig.add_subplot(111)
colormap = plt.cm.gist_ncar
ax1.set_prop_cycle(color=[colormap(i) for i in np.linspace(0, 0.9, num_classes)])
ax1.set_title('Image Index: '+str(image_i) + ' Original Prediction Index: '+str(predicted_class) + ' Correct Class Index: '+str(ground_truth_class))
for explanation_name in explanation_names:
ax1.plot(detrioration_steps,explanation_results[explanation_name], label="Explanation: "+str(explanation_name))
plt.legend(loc='upper right')
plt.show()
def DisplayTestAccuraciesForAllClassesForAllExplanationsAcrossAllImages(explanation_names,accuracies_dict,num_steps=20):
detrioration_steps = list(range(0,num_steps+1))
fig = plt.figure()
ax1 = fig.add_subplot(111)
colormap = plt.cm.gist_ncar
ax1.set_prop_cycle(color=[colormap(i) for i in np.linspace(0, 0.9, len(explanation_names))])
ax1.set_title("Degredatation of Test Accuracy")
for explanation_name in explanation_names:
ax1.plot(detrioration_steps,accuracies_dict[explanation_name], label="Explanation: "+str(explanation_name))
plt.legend(loc='upper right')
plt.show()
def DisplayOriginalPredictionDegradationForAllExplanationsAcrossAllImages(explanation_names, image_results_dict,num_steps=20):
detrioration_steps = list(range(0,num_steps))
# predicted_class = image_results_dict[explanation_names[0]][image_i]["original_prediction"]
# original_strength = image_results_dict[explanation_names[0]][image_i]["original_prediction_score"]
# ground_truth_class = image_results_dict[explanation_names[0]][image_i]["ground_truth"]
explanation_all_results = {}
explanation_results = {}
for explanation_name in explanation_names:
explanation_all_results[explanation_name] = []
for i in range(len(image_results_dict[explanation_name][0]["original_prediction_degradations"])):
explanation_all_results[explanation_name].append([])
for image_i in range(len(image_results_dict[explanation_name])):
for i in range(len(image_results_dict[explanation_name][image_i]["original_prediction_degradations"])):
explanation_all_results[explanation_name][i].append(image_results_dict[explanation_name][image_i]["original_prediction_degradations"][i])
explanation_results[explanation_name] = [np.mean(i) for i in explanation_all_results[explanation_name] ]
fig = plt.figure()
ax1 = fig.add_subplot(111)
colormap = plt.cm.gist_ncar
ax1.set_prop_cycle(color=[colormap(i) for i in np.linspace(0, 0.9, len(explanation_names))])
ax1.set_title("Average Degradation Across Time Step for Entire Testset")
for explanation_name in explanation_names:
ax1.plot(detrioration_steps,explanation_results[explanation_name], label="Explanation: "+str(explanation_name))
plt.legend(loc='upper right')
plt.show()
def DisplayOriginalPredictionDegradationForAllExplanationsForOneImage(explanation_names, image_i, image_results_dict,num_steps=20):
detrioration_steps = list(range(0,num_steps))
predicted_class = image_results_dict[explanation_names[0]][image_i]["original_prediction"]
original_strength = image_results_dict[explanation_names[0]][image_i]["original_prediction_score"]
ground_truth_class = image_results_dict[explanation_names[0]][image_i]["ground_truth"]
explanation_results = {}
for explanation_name in explanation_names:
explanation_results[explanation_name] = image_results_dict[explanation_name][image_i]["original_prediction_degradations"]
fig = plt.figure()
ax1 = fig.add_subplot(111)
colormap = plt.cm.gist_ncar
ax1.set_prop_cycle(color=[colormap(i) for i in np.linspace(0, 0.9, len(explanation_names))])
ax1.set_title('Image Index: '+str(image_i) + ' Original Prediction Index: '+str(predicted_class) + ' Original Prediction Score: '+str(original_strength) + ' Correct Class Index: '+str(ground_truth_class))
for explanation_name in explanation_names:
ax1.plot(detrioration_steps,explanation_results[explanation_name], label="Explanation: "+str(explanation_name))
plt.legend(loc='upper right')
plt.show()
def GetAccuraciesDict(experiment_id, dataset_name, explanation_names,perturbation_type,results_dir="results"):
accuracies_dict = {}
for explanation_name in explanation_names:
accuracies_dict[explanation_name] = []
accuracies_csv_name = experiment_id+"_"+dataset_name+ "_" + perturbation_type + "_" +explanation_name+"_results.csv"
accuracies_csv_path = os.path.join(results_dir,accuracies_csv_name)
accuracies_string = ""
with open(accuracies_csv_path, "r") as f:
accuracies_string = f.read()
accuracies_lines = accuracies_string.split("\n")
for accuracy_line in accuracies_lines:
accuracies = accuracy_line.split(",")
accuracies_dict[explanation_name].append(float(accuracies[2]))
return accuracies_dict
def GetResultsDict(experiment_id, dataset_name, explanation_names,perturbation_type,results_dir="results",num_steps =20):
results_pickle_name = "results_"+experiment_id+"_"+dataset_name+"_"+perturbation_type+".pkl"
results_pickle_path = os.path.join(results_dir,results_pickle_name)
image_results_dicts = {}
if(os.path.exists(results_pickle_path)):
print("Results Pickle Found - Loading Results Dict")
with open(results_pickle_path,"rb") as f:
image_results_dicts = pickle.load(f)
else:
print("Results Pickle Not Found - Generating Results Dict")
for explanation_name in explanation_names[:]:
image_results_dicts[explanation_name] = []
for deterioration_step in range(num_steps)[:]:
deterioration_step_string = format(deterioration_step, '05d')
file_name = experiment_id + "_" + dataset_name + "_" + perturbation_type + "_" + explanation_name + "_" + deterioration_step_string +"_deterioration_results.csv"
file_path = os.path.join(results_dir,"image_results",file_name)
results_string = ""
with open(file_path, "r") as f:
results_string = f.read()
results = results_string.split("\n")
for img_i in range(len(results))[:]:
result = results[img_i].split(",")
if(deterioration_step == 0):
image_results_dicts[explanation_name].append({"img_i":img_i,"ground_truth":int(result[11]),"original_prediction":int(result[10]),"results":[]})
image_results_dicts[explanation_name][img_i]["original_prediction_score"] = float(result[image_results_dicts[explanation_name][-1]["original_prediction"]])
image_results_dicts[explanation_name][img_i]["original_prediction_degradations"] = []
original_score = image_results_dicts[explanation_name][img_i]["original_prediction_score"]
original_prediction = image_results_dicts[explanation_name][img_i]["original_prediction"]
current_score = float(result[original_prediction])
image_results_dicts[explanation_name][img_i]["original_prediction_degradations"].append(current_score/original_score)
image_results_dicts[explanation_name][img_i]["results"].append([float(p)for p in result[:10]])
print("Saving Results Dict as Pickle")
with open(results_pickle_path,"wb") as f:
pickle.dump(image_results_dicts, f)
return image_results_dicts
def AggregatePredictionStrengths(explanation_names, image_results_dict):
aggregated_prediction_strengths = {}
if __name__ == "__main__":
experiment_id = "deletion_game"
# experiment_id = "testROAR"
dataset_name = "CIFAR-10"
explanation_names = [
"LIME"
,"Shap"
,"random"
]
perturbation_type = "mean"
num_steps = 20
image_results_dict = GetResultsDict(experiment_id,dataset_name,explanation_names,perturbation_type)
accuracies_dict = GetAccuraciesDict(experiment_id,dataset_name,explanation_names,perturbation_type)
explanation_name = explanation_names[0]
image_i = 0
# DisplayPredictionStrengthsAcrossAllClassesForOneExplanationOneImage(explanation_name, image_i, image_results_dict)
# DisplayPredictionStrengthOfPredicitedClassForAllExplanationOneImage(explanation_names, image_i, image_results_dict)
# DisplayTestAccuraciesForAllClassesForAllExplanationsAcrossAllImages(explanation_names,accuracies_dict)
# DisplayOriginalPredictionDegradationForAllExplanationsForOneImage(explanation_names, image_i, image_results_dict)
DisplayOriginalPredictionDegradationForAllExplanationsAcrossAllImages(explanation_names, image_results_dict,num_steps=num_steps)