-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainTestSplit.py
140 lines (116 loc) · 5.36 KB
/
trainTestSplit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import tensorflow as tf
import numpy as np
import json
import argparse
from functools import partial
from multiprocessing import Pool
from tqdm import tqdm
import os
print('Tensorflow version', tf.__version__)
class TFwriter:
def __init__(self, outdir, start_idx = 0):
print('Writing to: ', outdir)
self._outdir = outdir
self._start_idx = start_idx
def serialize_example(self, x, y):
"""converts x, y to tf.train.Example and serialize"""
#Need to pay attention to whether it needs to be converted to numpy() form
timestamp, canid, payload = x
timestamp = tf.train.FloatList(value = np.array(timestamp).flatten())
# print("TIMESTAMP: ", timestamp.value)
canid = tf.train.Int64List(value = np.array(canid).flatten())
# print("CANID: ", canid.value)
payload = tf.train.Int64List(value = np.array(payload).flatten())
# print("PAYLOAD: ", payload.value)
label = tf.train.Int64List(value = np.array([y]).flatten())
# print("LABEL: ", label.value)
features = tf.train.Features(
feature = {
"timestamp": tf.train.Feature(float_list = timestamp),
"header": tf.train.Feature(int64_list = canid),
"payload": tf.train.Feature(int64_list = payload),
"label" : tf.train.Feature(int64_list = label)
}
)
example = tf.train.Example(features = features)
# print("EXAMPLE: ", example)
return example.SerializeToString()
def write(self, data, label):
filename = os.path.join(self._outdir, str(self._start_idx)+'.tfrec')
with tf.io.TFRecordWriter(filename) as outfile:
outfile.write(self.serialize_example(data, label))
self._start_idx += 1
def read_tfrecord(example, window_size):
# window_size = 20
feature_description = {
'timestamp': tf.io.FixedLenFeature([window_size], tf.float32),
'header': tf.io.FixedLenFeature([window_size*4], tf.int64),
'payload': tf.io.FixedLenFeature([window_size*8], tf.int64),
'label': tf.io.FixedLenFeature([1], tf.int64)
}
sample = tf.io.parse_single_example(example, feature_description)
return sample
def write_tfrecord(dataset, tfwriter):
for batch_data in iter(dataset):
# print("BATCH TIMESTAMP: ", batch_data['timestamp'][0])
# print("BATCH HEADER: ", batch_data['header'][0])
# print("BATCH PAYLOAD: ", batch_data['payload'][0])
# print("BATCH LABEL: ", batch_data['label'][0])
features = zip(batch_data['timestamp'], batch_data['header'], batch_data['payload'])
for x, y in zip(features, batch_data['label']):
tfwriter.write(x, y)
def train_test_split(**args):
"""
"""
if args['strided'] == None:
args['strided'] = args['window_size']
data_dir = f"{args['data_path']}/TFRecord_w{args['window_size']}_s{args['strided']}"
out_dir = data_dir + '/{}'.format(args['rid'])
train_dir = os.path.join(out_dir, 'train')
val_dir = os.path.join(out_dir, 'val')
if not os.path.exists(train_dir):
os.makedirs(train_dir)
if not os.path.exists(val_dir):
os.makedirs(val_dir)
data_info = json.load(open(data_dir + '/datainfo.txt'))
train_writer = TFwriter(train_dir)
val_writer = TFwriter(val_dir)
train_ratio = 0.8 # TRAIN 80 / TEST 20
batch_size = 1000
total_train_size = 0
total_val_size = 0
for filename, dataset_size in data_info.items():
print('Read from {}: {} records'.format(filename, dataset_size))
dataset = tf.data.TFRecordDataset(filename)
# print("DATASET READ: ", list(dataset.as_numpy_iterator())[0])
dataset = dataset.map(lambda x: read_tfrecord(x, args['window_size']), num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.shuffle(50000)
# print("DATASET READ AFTER: ", list(dataset.as_numpy_iterator())[0])
train_size = int(dataset_size * train_ratio)
val_size = (dataset_size - train_size)
train_dataset = dataset.take(train_size)
val_dataset = dataset.skip(train_size)
# val_dataset = val_dataset.shuffle(50000)
train_dataset = train_dataset.batch(batch_size)
val_dataset = val_dataset.batch(batch_size)
# inputs = ([train_dataset, train_writer], [val_dataset, val_writer])
# p = Pool(2)
# p.map(write_tfrecord, inputs)
write_tfrecord(train_dataset, train_writer)
write_tfrecord(val_dataset, val_writer)
total_train_size += train_size
total_val_size += val_size
print('Total training: ', total_train_size)
print('Total validation: ', total_val_size)
if __name__ == '__main__':
#python3 trainTestSplit.py --data_path ./data/Processed --window_size 29 --strided 29 --rid 1
#python3 trainTestSplit.py --data_path ./road/preprocessed --window_size 29 --strided 29 --rid 1
# Parse argument
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', type=str, default='../Data/')
parser.add_argument('--window_size', type=int)
parser.add_argument('--strided', type=int)
parser.add_argument('--rid', type=int, default=1)
args = vars(parser.parse_args())
print(args)
train_test_split(**args)