-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtriangle.c
203 lines (179 loc) · 5.45 KB
/
triangle.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#include <math.h>
#include <stddef.h>
#include "polygon.h"
static double to_radians(double degrees)
{
double radians;
radians = degrees / 180;
/*
* to do
*
* Emulate this Archimedian constant by doing the degrees-to-radians
* conversion in the same way "pi" itself is derived, without defining "pi".
*/
return (radians *= 3.141592653589793116);
}
static double to_degrees(double radians)
{
double degrees;
degrees = radians * 180;
return (degrees /= 3.141592653589793116);
}
int solve_polygon(double * angles, double * sides)
{
unsigned int new_discovery, new_discovery_old;
new_discovery_old = 0;
while (!already_solved(angles, sides)) {
new_discovery = 0;
new_discovery |= find_angle(angles);
#if (POLYGON_DEPTH == 3)
new_discovery |= find_side(sides, angles);
new_discovery |= arc_find_angles(angles, sides);
#endif
if (new_discovery == new_discovery_old && new_discovery == 0)
return 0; /* early exit from repeated failure in the loop */
new_discovery_old = new_discovery;
}
return 1;
}
int find_angle(double * angles)
{
double * missing_angle;
double sum_of_known_angles;
register int i, given;
missing_angle = NULL;
sum_of_known_angles = 0;
given = 0;
for (i = 0; i < POLYGON_DEPTH; i++) {
if (!KNOWN(angles[i])) {
missing_angle = &(angles[i]); /* last (hopefully "only") unknown */
continue;
}
++given;
sum_of_known_angles += angles[i];
}
if (given != POLYGON_DEPTH - 1)
return 0;
*(missing_angle) = INTERIOR_DEGREES - sum_of_known_angles;
return 1; /* successfully found: missing = total - sum_of_not_missing */
}
int find_side(double * sides, const double * angles)
{
double a, b, c;
register int i;
a = b = c = 0;
for (i = 0; i < POLYGON_DEPTH; i++) {
const double A = to_radians(angles[(i + 0)]);
const double B = to_radians(angles[(i + 1) % POLYGON_DEPTH]);
const double C = to_radians(angles[(i + 2) % POLYGON_DEPTH]);
a = sides[(i + 0)];
b = sides[(i + 1) % POLYGON_DEPTH];
c = sides[(i + 2) % POLYGON_DEPTH];
/*
* Try applying the Law of Sines.
*/
if (!KNOWN(a) && KNOWN(A) && KNOWN(b) && KNOWN(B)) {
a = sin(A) * b / sin(B);
goto new_info;
}
if (!KNOWN(a) && KNOWN(A) && KNOWN(c) && KNOWN(C)) {
a = sin(A) * c / sin(C);
goto new_info;
}
if (!KNOWN(b) && KNOWN(B) && KNOWN(a) && KNOWN(A)) {
b = sin(B) * a / sin(A);
goto new_info;
}
if (!KNOWN(b) && KNOWN(B) && KNOWN(c) && KNOWN(C)) {
b = sin(B) * c / sin(C);
goto new_info;
}
if (!KNOWN(c) && KNOWN(C) && KNOWN(a) && KNOWN(A)) {
c = sin(C) * a / sin(A);
goto new_info;
}
if (!KNOWN(c) && KNOWN(C) && KNOWN(b) && KNOWN(B)) {
c = sin(C) * b / sin(B);
goto new_info;
}
/*
* There is also the Law of Co-Sines....
* For right triangles, that simplifies to: c^2 = a^2 + b^2
*
* Even the "Pythagorean Theorem" risks extra precision round-off, however.
*/
if (!KNOWN(c) && KNOWN(C) && KNOWN(a) && KNOWN(b)) {
c = sqrt(a*a + b*b - 2*a*b*cos(C));
goto new_info;
}
if (!KNOWN(b) && KNOWN(B) && KNOWN(a) && KNOWN(c)) {
b = sqrt(a*a + c*c - 2*a*c*cos(B));
goto new_info;
}
if (!KNOWN(a) && KNOWN(A) && KNOWN(a) && KNOWN(b)) {
a = sqrt(b*b + c*c - 2*b*c*cos(A));
goto new_info;
}
}
return 0;
new_info:
sides[(i + 0) % POLYGON_DEPTH] = a;
sides[(i + 1) % POLYGON_DEPTH] = b;
sides[(i + 2) % POLYGON_DEPTH] = c;
return 1;
}
int arc_find_angles(double * angles, const double * sides)
{
double A, B, C;
register int i;
A = B = C = 0;
for (i = 0; i < POLYGON_DEPTH; i++) {
const double a = sides[(i + 0)];
const double b = sides[(i + 1) % POLYGON_DEPTH];
const double c = sides[(i + 2) % POLYGON_DEPTH];
A = to_radians(angles[(i + 0)]);
B = to_radians(angles[(i + 1) % POLYGON_DEPTH]);
C = to_radians(angles[(i + 2) % POLYGON_DEPTH]);
/*
* Try applying the Law of Sines.
*/
if (!KNOWN(A) && KNOWN(a) && KNOWN(C) && KNOWN(c)) {
A = asin(a/c * sin(C));
goto new_info;
}
if (!KNOWN(B) && KNOWN(b) && KNOWN(C) && KNOWN(c)) {
B = asin(b/c * sin(C));
goto new_info;
}
/*
* Try applying the Law of Co-Sines.
*/
if (!KNOWN(C) && KNOWN(a) && KNOWN(b) && KNOWN(c)) {
C = acos((a*a + b*b - c*c) / (2*a*b));
goto new_info;
}
}
return 0;
new_info:
angles[(i + 0) % POLYGON_DEPTH] = to_degrees(A);
angles[(i + 1) % POLYGON_DEPTH] = to_degrees(B);
angles[(i + 2) % POLYGON_DEPTH] = to_degrees(C);
return 1;
}
int already_solved(double * angles, double * sides)
{
double sum_of_all_angles;
register int i;
for (i = 0; i < POLYGON_DEPTH; i++)
if (!KNOWN(angles[i]))
return 0;
for (i = 0; i < POLYGON_DEPTH; i++)
if (!KNOWN(sides[i]))
return 0;
sum_of_all_angles = 0;
for (i = 0; i < POLYGON_DEPTH; i++)
sum_of_all_angles += angles[i];
if (sum_of_all_angles != INTERIOR_DEGREES)
return -1; /* should not be possible without a bug... */
return 1;
}