-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathquantile.py
345 lines (283 loc) · 9.68 KB
/
quantile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
from random import *
def comp_basebufferitems(k, n):
return (n%(2*k))
def twos_comp(val_, bits):
val = val_
if ((val & (1 << (bits - 1))) != 0):
val = val - (1 << bits)
return val
def compute_validlevels(bp):
# todo popcount
return popcount(twos_comp(bp, 0xFFFFFFFF))
def comp_bitpattern(k, n):
return (n/(2*k))
def retained(k, n):
bbcnt = comp_basebufferitems(k, n);
bp = comp_bitpattern(k, n);
vl = compute_validlevels(bp);
return (bbcnt + vl * k)
def posOfPhi(phi, n):
pos = floor(phi * n)
if (pos == n):
return n-1
return pos
def searchForChunkContainingPos(arr, pos, l, r):
if (l+1 != r):
m = 1 + (r-1) / 2
if(arr(m) <= pos):
return searchForChunkContainingPos(arr, pos, m, r)
else:
return searchForChunkContainingPos(arr, pos, l, m)
return l
def chunkContainingPos(arr, pos):
len_ = arr.domain.high - 1
n = arr[len_]
l = 0
r = len_
return searchForChunkContainingPos(arr, pos, l, r)
class QSAux(object):
def __init__(self, s_quantsketch):
self.n = 0
self.arr = list()
self.wtarr = list()
k = s_quantsketch.k
n_ = s_quantsketch.n
bitpattern = s_quantsketch.bitpattern
combinedbuffer = s_quantsketch.combinedbuffer
buffercount = s_quantsketch.basebuffercount
nsamples = retained(s_quantsketch.k, s_quantsketch.n)
self.arr = list([ 0 for i in xrange(nsamples)])
self.wtarr = list([ 0 for i in xrange(nsamples+1)])
self.populateFromSketch(k, n_, bitpattern, combinedbuffer, buffercount, nsamples, arr, wtarr, s.comp)
self.blockyTandemMergeSort(arr, wtarr, nsamples, k, s.comp)
subtot = 0
for i in xrange(nsamples):
newsubtot = subtot + wtarr[i]
wtarr[i] = subtot
subtot = newsubtot
self.n = n_
def quantile(self, phi):
pos = posOfPhi(phi, n)
retval = self.approxAnswerPosQuery(pos)
return retval
def approxAnswerPosQuery(self, pos):
#if !(0 <= pos) { return Option(); }
#if !(pos < n) { return Option(T); }
idx = chunkContainingPos(wtarr, pos)
return self.arr[idx] #new Option(T, arr(idx));
def blockyTandemMergeSortRecur(self, ksrc, vsrc, kdst, vdst, grpstart, grplen, blksize, arrlim, comp):
if(grplen == 1):
return
grplen1 = grplen/2
grplen2 = grplen - grplen1
grpstart1 = grpstart
grpstart2 = grpstart + grplen1
self.blockyTandemMergeSortRecur(kdst, vdst, ksrc, vsrc, grpstart1, grplen1, blksize, arrlim, comp)
self.blockyTandemMergeSortRecur(kdst, vdst, ksrc, vsrc, grpstart2, grplen2, blksize, arrlim, comp)
arrstart1 = grpstart1*blksize
arrstart2 = grpstart2*blksize
arrlen1 = grplen1 * blksize
arrlen2 = grplen2 * blksize
if(arrstart2 + arrlen2 > arrlim):
arrlen2 = arrlim - arrstart2
self.tandemMerge(ksrc, vsrc, arrstart1, arrlen1, arrstart2, arrlen2, kdst, vdst, arrstart1, comp)
def tandemMerge(self, ksrc, vsrc, arrst1, arrlen1, arrst2, arrlen2, kdst, vdst, arrst3, comp):
arrstop1 = arrst1 + arrlen1
arrstop2 = arrst2 + arrlen2
i1 = arrst1
i2 = arrst2
i3 = arrst3
while(i1 < arrst1 and i2 < arrst2):
if(comp(ksrc[i2], ksrc[i1]) < 0):
kdst[i3] = ksrc[i2]
vdst[i3] = vsrc[i2]
i3+=1
i2+=1
else:
kdst[i3] = ksrc[i1]
vdst[i3] = vsrc[i1]
i3+=1
i1+=1
if(i1 < arrstop1):
srng = xrange(i1, (i3+(arrstop1-i1)))
drng = xrange(i3, (i3+(arrstop1-i2)))
for (i,j) in zip(srng, drng):
(ksrc[i], vsrc[i]) = (kdst[j], vdst[j])
else:
srng = xrange(i2, (i3+(arrstop1-i1)))
drng = xrange(i3, (i3+(arrstop1-i2)))
for (i,j) in zip(srng, drng):
(ksrc[i], vsrc[i]) = (kdst[j], vdst[j])
def blockyTandemMergeSort(self, arr, wtarr, nsamples, k, comp):
#if !(k >= 1) then return;
#if nsamples <= k then return;
nblks = nsamples/k
if(nblks * nsamples < k):
nblks+=1
arrtmp = arr;
wtarrtmp = wtarr;
self.blockyTandemMergeSortRecur(arrtmp, wtarrtmp, arr, wtarr, 0, nblks, k, nsamples, comp)
def populateFromSketch(self, k, n, bitpattern, buffer, buffercount, nsamples, arr, wtarr, comp):
weight = 1
nxt = 0
bits = bitpattern
lvl = 0
while bits != 0:
weight *= 2
if (bits & 1) > 0:
offset = (2+lvl)*k
for i in xrange(k):
arr[nxt] = buffer[i+offset]
wtarr[nxt] = weight
nxt+=1
bits = bits >> 1
weight = 1
startofbasebufferblock = nxt
for i in xrange(buffercount):
arr[nxt] = buffer[i]
wtarr[nxt] = weight
nxt+=1
c = QSComparator(comp)
tarr = map(lambda x: arr[x], xrange(startofbasebufferblock,startofbasebufferblock+nsamples))
sort(tarr, c)
wtarr[nsamples] = 0
class QSComparator(object):
def __init__(self, comp):
self.comp = comp
def compare(self, a, b):
return self.comp(a,b)
class QuantileSketch(object):
def __init__(self, _comp, _k):
self.comp = _comp;
self.k = _k;
self.n = 0;
self.minval = None
self.maxval = None
self.combinedbuffercapacity = 0
self.basebuffercount = 0
self.bitpattern = 0
bufalloc = 2 * min(2, _k)
self.bufDom = bufalloc
self.combinedbuffer = list([ None for i in xrange(self.bufDom) ])
def growBaseBuffer(self):
oldsize = self.bufDom
self.bufDom = max(min(2*self.k, 2*oldsize), 1)
self.combinedbuffercapacity = self.bufDom
self.combinedbuffer = list([ i < len(self.combinedbuffer) and self.combinedbuffer[i] or None for i in xrange(self.bufDom)])
def hiBitPos(self, num):
#return 63 - clz(num) # TODO find clz
b = "{:064b}".format(num)
return b.index("1")
def computeNumLevelsNeeded(self):
return 1 + self.hiBitPos(self.n/2*self.k)
def maybeGrowLevels(self):
numlvlsneeded = self.computeNumLevelsNeeded()
if(numlvlsneeded == 0):
return;
spaceneeded = (2+numlvlsneeded)*self.k
if(spaceneeded <= self.combinedbuffercapacity):
return
self.bufDom = spaceneeded
self.combinedbuffercapacity=spaceneeded
def lowestZeroBitStartingAt(self, bits, pos_):
pos = pos_ & 0X3F
mybits = bits >> pos
while ( (mybits & 1) != 0 ):
mybits = mybits >> 1
pos+=1
return pos
def mergeTwoSizeKBuffers(self, src1, src1pos, src2, src2pos, dst, dstpos, k, comp):
arr1stop = src1pos+k
arr2stop = src1pos+k
i1 = src1pos
i2 = src2pos
i3 = dstpos
while (i1 < arr1stop and i2 < arr2stop):
if (comp(src2(i2), src1(i1)) < 0):
i3+=1
i2+=1
dst[i3] = src2[i2]
else:
i3+=1
i1+=1
dst[i3] = src1[i1]
if(i1 < arr1stop):
smax = i1+(arr1stop-i1)
dmax = i3+(arr1stop-i1)
srng = xrange(i1, i1+(arr1stop-i1)-1)
drng = xrange(i3, i3+(arr1stop-i1)-1)
for (i,j) in zip(srng, drng):
src1[smax-i] = dst[dmax-j] #(i3..i3+(arr1stop-i1));
else:
smax = i2+(arr2stop-i2)
dmax = i3+(arr2stop-i2)
srng = xrange(i2, i2+(arr2stop-i2))
drng = xrange(i3, i3+(arr2stop-i2))
for (i,j) in zip(srng, drng):
src1[smax-i] = dst[dmax-j] #(i3..i3+(arr1stop-i1));
def inPlacePropagateCarry(self, startinglevel, bbuf, bbufpos):
endinglevel = self.lowestZeroBitStartingAt(self.bitpattern, startinglevel)
for lvl in xrange(startinglevel, endinglevel):
self.mergeTwoSizeKBuffers(self.combinedbuffer, (2+lvl)*self.k, self.combinedbuffer, (2+endinglevel)*self.k, bbuf, bbufpos, self.k, self.comp)
self.zipSize2KBuffer(bbuf, bbufpos, self.combinedbuffer, (2+lvl)*self.k, self.k)
self.bitpattern = self.bitpattern + (1 << startinglevel)
def zipSize2KBuffer(self, bufA, sA, bufB, sB, k):
#randv = #self.makeRandomStream(0) # random
roff = (random() > 0.5) #randv.getNext() # random
limb = sB + k
a = sA + roff
for b in xrange(0, limb-sB):
bufB[b] = bufA[a]
a+=2
def processFullBaseBuffer(self):
self.maybeGrowLevels()
c = QSComparator(self.comp)
sorted(self.combinedbuffer, cmp=lambda x, y: c.compare(x, y))
self.inPlacePropagateCarry(0, self.combinedbuffer, 0)
self.basebuffercount = 0
def update(self, di):
if(self.comp(di, self.maxval) > 0):
self.maxval = di
elif(self.comp(di, self.minval) < 0):
self.minval = di
#print self.basebuffercount, self.combinedbuffercapacity
if(self.basebuffercount+1 > self.combinedbuffercapacity):
self.growBaseBuffer()
self.combinedbuffer[self.basebuffercount] = di
self.basebuffercount+=1
self.n+=1
if(self.basebuffercount == 2*self.k):
self.processFullBaseBuffer()
def quantile(self, fraction):
if fraction < 0.0 or fraction > 1.0:
return None
elif fraction == 0.0:
return self.minval
elif fraction == 1.0:
return self.maxval
aux = QSAux(self)
return aux.quantile(fraction)
def compare(self, a, b):
return self.comp(a,b)
def QuantileSketchCreate(cmpfnc, k, values):
qs = QuantileSketch(cmpfnc, k)
for val in values:
qs.update(val)
return qs
if __name__ == "__main__":
def uintcmp(x, y):
if(x == y):
return 0
elif(x < y):
return -1
return 1
#qs = QuantileSketch(uintcmp, 1000)
#[ qs.update(i) for i in xrange(1000) ]
values = [ i for i in xrange(10000000) ]
qsc = QuantileSketchCreate(uintcmp, 100, values)
q75 = qsc.quantile(0.75)
print(q75)
q25 = qsc.quantile(0.25)
print(q25);
q10 = qsc.quantile(0.10)
print(q10)