-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_mlla_acdc.py
163 lines (149 loc) · 6.41 KB
/
train_mlla_acdc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import argparse
import logging
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from networks.MLLA_Unet_Build import MLLAUnet as ViT_seg
from trainer import trainer_synapse, trainer_acdc, trainer_ab
from config_mlla_unet import get_config
device = torch.device("cuda:1")
parser = argparse.ArgumentParser()
parser.add_argument('--root_path', type=str,
default='data/Synapse/train_npz', help='root dir for data')
parser.add_argument('--dataset', type=str,
default='Synapse', help='experiment_name')
parser.add_argument('--list_dir', type=str,
default='./lists/lists_Synapse', help='list dir')
parser.add_argument('--num_classes', type=int,
default=9, help='output channel of network')
parser.add_argument('--output_dir', type=str, help='output dir')
parser.add_argument('--max_iterations', type=int,
default=30000, help='maximum epoch number to train')
parser.add_argument('--max_epochs', type=int,
default=150, help='maximum epoch number to train')
parser.add_argument('--batch_size', type=int,
default=24, help='batch_size per gpu')
parser.add_argument('--n_gpu', type=int, default=1, help='total gpu')
parser.add_argument('--deterministic', type=int, default=1,
help='whether use deterministic training')
parser.add_argument('--base_lr', type=float, default=0.01,
help='segmentation network learning rate')
parser.add_argument('--img_size', type=int,
default=224, help='input patch size of network input')
parser.add_argument('--seed', type=int,
default=1234, help='random seed')
parser.add_argument('--cfg', type=str, required=True, metavar="FILE", help='path to config file', )
parser.add_argument(
"--opts",
help="Modify config options by adding 'KEY VALUE' pairs. ",
default=None,
nargs='+',
)
parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset')
parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'],
help='no: no cache, '
'full: cache all data, '
'part: sharding the dataset into nonoverlapping pieces and only cache one piece')
parser.add_argument('--resume', help='resume from checkpoint')
parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps")
parser.add_argument('--use-checkpoint', action='store_true',
help="whether to use gradient checkpointing to save memory")
parser.add_argument('--amp-opt-level', type=str, default='O1', choices=['O0', 'O1', 'O2'],
help='mixed precision opt level, if O0, no amp is used')
parser.add_argument('--tag', help='tag of experiment')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--throughput', action='store_true', help='Test throughput only')
parser.add_argument('--device', type=str, default='cuda:0',
help='Device to use for computation: cpu, cuda:0, cuda:1, ..., mps')
args = parser.parse_args()
if args.dataset == "Synapse":
args.root_path = os.path.join(args.root_path, "train_npz")
config = get_config(args)
if __name__ == "__main__":
if not args.deterministic:
cudnn.benchmark = True
cudnn.deterministic = False
else:
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# Validate and set the device
if args.device.startswith('cuda'):
if not torch.cuda.is_available():
raise ValueError("CUDA is not available on this system.")
device_id = int(args.device.split(':')[1]) if ':' in args.device else 0
if device_id >= torch.cuda.device_count():
raise ValueError(f"Invalid CUDA device ID: {device_id}. Available devices: {torch.cuda.device_count()}")
elif args.device == 'mps':
if not torch.backends.mps.is_available():
raise ValueError("MPS is not available on this system.")
elif args.device != 'cpu':
raise ValueError(f"Invalid device specified: {args.device}")
device = torch.device(args.device)
print(f"Using device: {device}")
dataset_name = args.dataset
dataset_config = {
'ACDC': {
# 'Dataset': ACDC_dataset, # datasets.dataset_acdc.BaseDataSets,
'root_path': args.root_path,
'list_dir': None,
'num_classes': 4,
},
'Synapse': {
'root_path': args.root_path,
'list_dir': './lists/lists_Synapse',
'num_classes': 9,
},
'flare22': {
'root_path': './data/data',
'num_classes': 14,
'list_dir': './lists/lists_flare22',
},
'altas': {
'root_path': './data/data',
'num_classes': 3,
'list_dir': './lists/lists_altas',
},
'amos': {
'root_path': './data/data',
'num_classes': 16,
'list_dir': './lists/lists_amos',
},
'amos_mr': {
'root_path': './data/data',
'num_classes': 16,
'list_dir': './lists/lists_amos_mr',
},
'word': {
'root_path': './data/data',
'num_classes': 17,
'list_dir': './lists/lists_word',
},
}
if args.batch_size != 24 and args.batch_size % 6 == 0:
args.base_lr *= args.batch_size / 24
args.num_classes = dataset_config[dataset_name]['num_classes']
args.root_path = dataset_config[dataset_name]['root_path']
args.list_dir = dataset_config[dataset_name]['list_dir']
print
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
net = ViT_seg(config, img_size=args.img_size, num_classes=args.num_classes).to(device)
# net = ViT_seg(config, img_size=args.img_size, num_classes=args.num_classes)
# print("Model summary:", net)
net.load_from(config)
trainer = {
'Synapse': trainer_synapse,
'ACDC': trainer_acdc,
'flare22': trainer_ab,
'altas': trainer_ab,
'amos': trainer_ab,
'amos_mr': trainer_ab,
'word': trainer_ab
}
trainer[dataset_name](args, net, args.output_dir)