-
Notifications
You must be signed in to change notification settings - Fork 0
/
vae.py
132 lines (97 loc) · 3.83 KB
/
vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from __future__ import print_function
import warnings as w
w.simplefilter(action = 'ignore')
import argparse
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from keras.layers import Input, Dense, Lambda
from keras.models import Model
from keras import backend as K
from keras import metrics
import os
from PIL import Image
import cv2
batch_size = 100
original_dim = 12288
latent_dim = 2
intermediate_dim = 256
epochs = 500
epsilon_std = 1.0
parser = argparse.ArgumentParser(description='Variational Autoencoder')
parser.add_argument('--input',type=str,required=True,help='Directory containing images eg: data/')
parser.add_argument('--epoch',type=int,default=500,help='No of training iterations')
parser.add_argument('--batch',type=int,default=100,help='Batch Size')
parser.add_argument('--inter_dim',type=int,default=256,help='Dimension of Intermediate Layer')
args = parser.parse_args()
epochs = args.epoch
intermediate_dim = args.inter_dim
x = Input(shape=(original_dim,))
h = Dense(intermediate_dim, activation='relu')(x)
z_mean = Dense(latent_dim)(h)
z_log_var = Dense(latent_dim)(h)
def sampling(args):
z_mean, z_log_var = args
epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim), mean=0.,
stddev=epsilon_std)
return z_mean + K.exp(z_log_var / 2) * epsilon
# note that "output_shape" isn't necessary with the TensorFlow backend
z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_var])
# we instantiate these layers separately so as to reuse them later
decoder_h = Dense(intermediate_dim, activation='relu')
decoder_mean = Dense(original_dim, activation='sigmoid')
h_decoded = decoder_h(z)
x_decoded_mean = decoder_mean(h_decoded)
# train the VAE on MNIST digits
#(x_train, y_train), (x_test, y_test) = mnist.load_data()
y_train = []
y_test =[]
for each in os.listdir(args.input):
img = cv2.imread(os.path.join(args.input,each))
np_im = np.array(img)
y_train.append(img)
y_test.append(img)
x_train=np.array(y_train)
x_test=np.array(y_test)
print(x_train.shape)
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
# instantiate VAE model
vae = Model(x, x_decoded_mean)
# Compute VAE loss
xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean)
kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
vae_loss = K.mean(xent_loss + kl_loss)
vae.add_loss(vae_loss)
vae.compile(optimizer='rmsprop')
vae.summary()
vae.fit(x_train,
shuffle=True,
epochs=epochs,
batch_size=batch_size,
validation_data=(x_test, None))
# build a model to project inputs on the latent space
encoder = Model(x, z_mean)
x_test_encoded = encoder.predict(x_test, batch_size=batch_size)
# build a image generator that can sample from the learned distribution
decoder_input = Input(shape=(latent_dim,))
_h_decoded = decoder_h(decoder_input)
_x_decoded_mean = decoder_mean(_h_decoded)
generator = Model(decoder_input, _x_decoded_mean)
n = 20
digit_size = 64
figure = np.zeros((digit_size * n, digit_size * n, 3 * n))
# linearly spaced coordinates on the unit square were transformed through the inverse CDF (ppf) of the Gaussian
# to produce values of the latent variables z, since the prior of the latent space is Gaussian
grid_x = norm.ppf(np.linspace(0.05, 0.95, n))
grid_y = norm.ppf(np.linspace(0.05, 0.95, n))
for i, yi in enumerate(grid_x):
for j, xi in enumerate(grid_y):
z_sample = np.array([[xi, yi]])
x_decoded = generator.predict(z_sample)
newimage = x_decoded[0].reshape(digit_size, digit_size, 3)
img_cv = cv2.resize(newimage,(256,256))
cv2.imshow('Color image', img_cv)
cv2.waitKey(0)