-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathata_04_misc.jl
968 lines (840 loc) · 36.9 KB
/
ata_04_misc.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
### A Pluto.jl notebook ###
# v0.14.8
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : missing
el
end
end
# ╔═╡ 66772e00-9981-11eb-1941-d9132b99c780
using Plots, LaTeXStrings, PrettyTables, DataFrames, LinearAlgebra,
PlutoUI, BenchmarkTools, ForwardDiff, Printf, Random, FFTW
# ╔═╡ 465e7582-95c7-11eb-0c7b-ed7dddc24b4f
begin
function ingredients(path::String)
# this is from the Julia source code (evalfile in base/loading.jl)
# but with the modification that it returns the module instead of the last object
name = Symbol(basename(path))
m = Module(name)
Core.eval(m,
Expr(:toplevel,
:(eval(x) = $(Expr(:core, :eval))($name, x)),
:(include(x) = $(Expr(:top, :include))($name, x)),
:(include(mapexpr::Function, x) = $(Expr(:top, :include))(mapexpr, $name, x)),
:(include($path))))
m
end;
M = ingredients("tools.jl")
IRLSQ = M.IRLSQ
xgrid(N) = [ j * π / N for j = 0:2N-1 ]
kgrid(N) = [ 0:N; -N+1:-1 ]
triginterp(f, N) = fft(f.(xgrid(N))) / (2*N)
evaltrig(x, F̂) = sum( real(F̂ₖ * exp(im * x * k))
for (F̂ₖ, k) in zip(F̂, kgrid(length(F̂) ÷ 2)) )
function trigerr(f, N; xerr = range(0, 2π, length=13*N))
F̂ = triginterp(f, N)
return norm( evaltrig.(xerr, Ref(F̂)) - f.(xerr), Inf )
end
end;
# ╔═╡ 58d79c34-95c7-11eb-0679-eb9741761c10
md"""
## §4 Miscellaneous
In this section of the mini-course we will cover a small number of topics, without going too deeply into any of them, simply to get some exposure to some important and fun ideas:
* Chebyshev polynomials and Chebyshev points
* Rational Approximation
* Max-norm approximation with iteratively reweighted least squares
"""
# ╔═╡ 9c169770-95c7-11eb-125a-4f174da56d36
md"""
## §4.1 Approximation with Algebraic Polynomials
The witch of Agnesi:
```math
f(x) = \frac{1}{1+ 25 x^2}, \qquad x \in [-1, 1].
```
"""
# ╔═╡ 05ec7c1e-95c8-11eb-176a-3372a765d4d7
begin
agnesi(x) = 1 / (1 + 25 * x^2)
plot(agnesi, -1, 1, lw=3, label = "",
size = (350, 200), title = "Witch of Agnesi",
xlabel = L"x", ylabel = L"f(x)")
end
# ╔═╡ 311dd26e-95ca-11eb-2ff5-03a53a662a62
md"""
We can rescale ``f`` and repeat it periodically and then use trigonometric polynomials to approximate it. Because the periodic extension is only ``C^{0,1}``, i.e., Lipschitz, but no more we only get a rate of ``N^{-1}``.
"""
# ╔═╡ 4428c460-95c8-11eb-16fc-6327acc80bb6
let f = x -> agnesi((x - π)/π), NN = (2).^(2:10)
plot(NN, trigerr.(Ref(f), NN), lw=2, m=:o, ms=4,
size = (350, 250), xscale = :log10, yscale = :log10,
label = "error", title = "Approximation of Agnesi",
xlabel = L"N", ylabel = L"\Vert f- I_N f \Vert_\infty")
plot!(NN[5:end], 3e-2*NN[5:end].^(-1), lw=2, ls=:dash, c=:black,
label = L"\sim N^{-1}" )
end
# ╔═╡ 3533717c-9630-11eb-3fc6-3f4b29eaa63a
md"""
And no surprise - the periodic repetition of ``f`` is only Lipschitz:
"""
# ╔═╡ 467c7f76-9630-11eb-1cdb-6dedae3c459f
let f = x -> agnesi((mod(x+1, 2)-1)/2)
plot(f, -1, 4, lw=2, label = "",
size = (400, 200), xlabel = L"x", ylabel = L"f(x)")
end
# ╔═╡ 6cbcac96-95ca-11eb-05f9-c7a781b38061
md"""
But it is a little ridiculous that we get such a poor rate: After all ``f`` is an analytic function on it domain of definition ``[-1, 1]``. Can we replicate the excellent approximation properties that trigonometric polynomials have for periodic analytic functions?
Our first idea is to use algebraic polynomials
```math
p(x) = \sum_{n = 0}^N c_n x^n
```
such that ``p \approx f`` in ``[-1,1]``. Analogously as for trigonometric polynomials, we could try to determine the coefficients via interpolation,
```math
p(x_n) = f(x_n), \qquad x_n = -1 + 2n/N, \qquad n = 0, \dots, N.
```
here with equispaced nodes.
This is a bad idea:
"""
# ╔═╡ 77dcea8e-95ca-11eb-2cf1-ad342f0f6d7d
# Implementation of Runge example
let f = x -> 1/(1+25*x^2), NN1 = [5, 8, 10], NN2 = 5:5:30
function poly_fit(N)
# this is numerically unstable - do not do this!!!
# we will learn in the next lecture how to do stable numerical interpolation
A = [ (-1 + 2*m/N)^n for m = 0:N, n = 0:N ]
F = [ f((-1 + 2*m/N)) for m = 0:N ]
return A \ F
end
# do not do this either, it is neither efficient nor stable!
poly_eval(x, c) = sum( c[n] * x^(n-1) for n = 1:length(c) )
# first plot
xp = range(-1, 1, length=300)
P1 = plot(xp, f.(xp); lw=4, label = "exact",
size = (400, 400), xlabel = L"x")
for (iN, N) in enumerate(NN1)
xi = [(-1 + 2*m/N) for m = 0:N]
c = poly_fit(N)
plot!(P1, xp, poly_eval.(xp, Ref(c)), c = iN+1, lw=2,label = L"p_{%$(N)}")
plot!(P1, xi, f.(xi), lw=0, c = iN+1, m = :o, ms=3, label = "")
end
# second plot
xerr = range(-1, 1, length=3_000)
err = [ norm( f.(xerr) - poly_eval.(xerr, Ref(poly_fit(N))), Inf )
for N in NN2 ]
P2 = plot(NN2, err, lw = 3, label = L"\Vert f - I_N f \Vert",
yscale = :log10, xlabel = L"N", legend = :topleft)
plot(P1, P2, size = (600, 300), title = "Witch of Agnesi")
end
# ╔═╡ 27f7e2c8-95cb-11eb-28ca-dfe90be89670
md"""
## The Chebyshev Idea
The idea is to lift ``f`` to the complex unit circle:
```math
g(\theta) := g(\cos\theta)
```
"""
# ╔═╡ cc8fe0f4-95cd-11eb-04ec-d3fc8cced91b
let
tt = range(0, 2π, length=300)
P1 = plot(cos.(tt), sin.(tt), lw=3, label = "",
size = (250, 250), xlabel = L"x = {\rm Re} z", ylabel = L"{\rm Im} z")
plot!([-1,1], [0,0], lw=3, label = "", legend = :bottomright)
for x in -1:0.2:1
plot!([x,x], [sqrt(1-x^2), -sqrt(1-x^2)], c=2, lw=1, label = "")
end
P1
end
# ╔═╡ dfc0866c-95cb-11eb-1869-7bd67468c233
let
tt = range(0, 2π, length=300)
xx = range(-1, 1, length=200)
P2 = plot(cos.(tt), sin.(tt), 0*tt, c = 1, lw = 3, label = "")
# for x in -1:0.1:1
# f = agnesi(x)
# plot!([x,x], [sqrt(1-x^2), -sqrt(1-x^2)], [f, f],
# c=:grey, lw=1, label = "")
# end
plot!([-1, 1], [0, 0], [0, 0], c = 2, lw = 3, label = "")
plot!(xx, 0*xx, agnesi.(xx), c = 2, lw = 2, label = "Agnesi")
plot!(cos.(tt), sin.(tt), agnesi.(cos.(tt)), c=3, lw=3, label= "Lifted",
size = (400, 300))
end
# ╔═╡ f3cd1326-95cd-11eb-192a-efc3371d17b6
md"""
For our Agnesi example we obtain
```math
g(\theta) = \frac{1}{1+ 25 \cos^2(\theta)}
```
which we already know to be analytic. This is a general principle. The regularity of ``f`` transforms into the same regularity for ``g`` but we gain periodicity. We will state some general results below. For now, let us continue to investigate:
Since ``g`` is periodic analytic we can apply a trigonometric approximation:
```math
g(\theta) \approx \sum_{k = -N}^N \hat{g}_k e^{i k \theta}
```
and we know that we obtain an exponential rate of convergence.
"""
# ╔═╡ 5181b8f4-95cf-11eb-30fe-cd93f4ed0012
md"""
### Chebyshev Polynomials
We could simply use this to construct approximations for ``f(x) = g(\cos^{-1}(x))``, in fact this is one of the most efficient and numericall stable ways to construct chebyshev polynomials, but it is very instructive to transform this approximation back to ``x`` coordinates. To that end we first note that
```math
g(-\theta) = f(\cos(-\theta)) = f(\cos\theta) = g(\theta)
```
and moreover, ``g(\theta) \in \mathbb{R}``. These two facts allow us to show that ``\hat{g}_{-k} = \hat{g}_k`` and moreover that $\hat{g}_k \in \mathbb{R}$. Thus, we obtain ,
```math
f(x) = g(\theta) = \hat{g}_0 + \sum_{k = 1}^N \hat{g}_k (e^{i k \theta} + e^{-i k \theta})
= \hat{g}_0 + \sum_{k = 1}^N \hat{g}_k \cos(k \theta).
```
Now comes maybe the most striking observation: if we define basis functions ``T_k(x)`` via the identify
```math
T_k( \cos \theta ) = \cos( k \theta )
```
so that we can write
```math
f(x) = \sum_{k = 0}^N \tilde{f}_k T_k(x)
```
where $\tilde{f}_0 = \hat{g}_0$ and $\tilde{f}_k = 2 \hat{g}_k$ of $k \geq 1$, then we have the following result:
**Lemma:** The function ``T_k(x)`` is a polynomial of degree ``k``. In particular, they form a basis of the space of polynomials, called the *Chebyshev Basis*. An equivalent definition is the 3-term recursion
```math
\begin{aligned}
T_0(x) &= 1, \\
T_1(x) &= x, \\
T_k(x) &= 2 x T_{k-1}(x) + T_{k-2}(x) \quad \text{for } k = 2, 3, \dots.
\end{aligned}
```
**Proof:** see [LN, Lemma 4.2]
"""
# ╔═╡ 7661921a-962a-11eb-04c0-5b7e486aea05
md"""
### Chebyshev Interpolant
Next, we transform the trigonometric interpolant ``I_N g(\theta)`` to ``x`` coordinates. We already know now that it will be a real algebraic polynomial and we can derive a more derict way to define it: namely, the interpolation nodes are given by
```math
x_j = \cos( \theta_j ) = \cos( \pi j / N ), \qquad j = 0, \dots, 2N-1
```
but because of the reflection symmetry of ``\cos`` they are repeated, i.e., ``x_j = x_{-j}`` and in fact we only need to keep
```math
x_j = \cos( \pi j / N ), \qquad j = 0, \dots, N.
```
which are called the *Chebyshev nodes* or *Chebyshev points*. Thus, trigonometric interpolation of ``g(\theta)`` corresponds to polynomial interpolation of ``f(x)`` at those points:
```math
I_N f(x_j) = f(x_j), \qquad j = 0, \dots, N.
```
"""
# ╔═╡ 4ca65bec-962b-11eb-3aa2-d5500fd24677
md"""
If we write ``I_N f(x) = p_N(x) = \sum_{n = 0}^N c_n T_n(x)`` then we obtain an ``(N+1) \times (N+1)`` linear system for the coefficients ``\boldsymbol{c}= (c_n)_{n = 0}^N``,
```math
\sum_{n = 0}^N c_n T_n(x_j) = f(x_j), \qquad j = 0, \dots, N
```
The resulting polynomial ``I_N f`` is called the *Chebyshev interpolant*. A naive implementation can be performed as follows:
"""
# ╔═╡ 69dfa184-962b-11eb-0ed2-c17aa6c15a45
begin
"""
reverse the nodes so they go from -1 to 1, i.e. left to right
"""
chebnodes(N) = [ cos( π * n / N ) for n = N:-1:0 ]
function chebbasis(x::T, N) where {T}
B = zeros(T, N+1)
B[1] = one(T)
B[2] = x
for k = 2:N
B[k+1] = 2 * x * B[k] - B[k-1]
end
return B
end
"""
Naive implementation of chebyshev interpolation. This works fine for
basic experiments, but to scale to larger problems, use the FFT!!!
See `chebinterp` below!
"""
function chebinterp_naive(f, N)
X = chebnodes(N)
F = f.(X)
A = zeros(N+1, N+1)
for (ix, x) in enumerate(X)
A[ix, :] = chebbasis(x, N)
end
return A \ F
end
"""
Fast and stable implementation based on the FFT. This uses
the connection between Chebyshev and trigonometric interpolation.
But this transform needs the reverse chebyshev nodes.
"""
chebinterp(f, N) = fct(f.(reverse(chebnodes(N))))
function fct(A::AbstractVector)
N = length(A)
F = ifft([A[1:N]; A[N-1:-1:2]])
return [[F[1]]; 2*F[2:(N-1)]; [F[N]]]
end
"""
Evaluate a polynomial with coefficients F̃ in the Chebyshev basis
"""
function chebeval(x, F̃)
T0 = one(x); T1 = x
p = F̃[1] * T0 + F̃[2] * T1
for n = 3:length(F̃)
T0, T1 = T1, 2*x*T1 - T0
p += F̃[n] * T1
end
return p
end
end
# ╔═╡ 3ef9e58c-962c-11eb-0172-a700d2f7e72c
let f = agnesi, NN = 6:6:60
xerr = range(-1, 1, length=2013)
err(N) = norm(f.(xerr) - chebeval.(xerr, Ref(chebinterp(f, N))), Inf)
plot(NN, err.(NN), lw=2, m=:o, ms=4, label = "error",
size = (300, 250), xlabel = L"N", ylabel = L"\Vert f - I_N f \Vert_\infty",
yscale = :log10,
title = "Chebyshev Interpolant")
plot!(NN[6:end], 2*exp.( - 0.2 * NN[6:end]), lw=2, ls=:dash, c=:black,
label = L"\exp( - N/5 )")
end
# ╔═╡ 19509e38-962d-11eb-1f5c-811188a57261
md"""
See [LN, Sec. 4.1, 4.2] and whiteboard summary to understand this rate fully. Concepts to understand include
* Chebyshev series: essentially the Fourier series for ``g(\theta)``
* Chebyshev coefficients: essentially the Fourier coefficients of ``g(\theta)``
* Jukousky map: the transformation between ``[-1,1]`` and the unit circle exteneded into the complex plane
* Bernstein ellipse: the tranformation of the strip ``\Omega_\alpha`` for ``g``
For the sake of completeness, we briefly state the two main approximation theorems which can be obtained fairly easily (though it would take some time) from the ideas we developed for far:
**Theorem [Jackson for Algebraic Polynomials]** Let ``f \in C^r([-1,1])`` and suppose that ``f^{(r)}`` has modulus of continuity ``\omega``, then
```math
\inf_{p_N \in \mathcal{P}_N} \| f - p_N \|_\infty \lesssim N^{-r} \omega(N^{-1}).
```
**Theorem:** Let ``f \in C([-1,1])`` also be analytic and bounded in the interior of the Bernstein ellipse
```math
E_\rho := \bigg\{ z = x + i y \in \mathbb{C} :
\bigg(\frac{x}{\frac12 (\rho+\rho^{-1})}\bigg)^2
+ \bigg(\frac{y}{\frac12 (\rho-\rho^{-1})}\bigg)^2 \leq 1 \bigg\}
```
where ``\rho > 1``, then
```math
\inf_{p_N \in \mathcal{P}_N} \| f- p_N \|_\infty \lesssim \rho^{-N}.
```
"""
# ╔═╡ 16591e8e-9631-11eb-1157-992452ed6514
md"""
With these results in hand we can perform a few more tests. We have already shown exponential convergence for an analytic target function; now we experiment with $$C^{j,\alpha}$$ smoothness,
```math
\begin{aligned}
f_1(x) &= |\cos(\pi x)|^{t}
\end{aligned}
```
where ``t`` is given by: $(@bind _t1 Slider(0.5:0.01:4.0, show_value=true))
"""
# ╔═╡ 7b835804-9694-11eb-0692-8dab0a07203e
let t = _t1, f = x -> abs(cos(π * x))^t, NN = (2).^(2:10)
xerr = range(-1, 1, length=2013)
err(N) = norm(f.(xerr) - chebeval.(xerr, Ref(chebinterp(f, N))), Inf)
plot(NN, err.(NN), lw=2, m=:o, ms=4, label = "error",
size = (300, 250), xlabel = L"N", ylabel = L"\Vert f - I_N f \Vert_\infty",
yscale = :log10, xscale = :log10,
title = L"f(x) = |\cos(\pi x)|^{%$t}")
plot!(NN[4:end], Float64.(NN[4:end]).^(-t), lw=2, ls=:dash, c=:black,
label = L"N^{-%$t}")
end
# ╔═╡ c1e69df8-9694-11eb-2dde-673888b5f7e2
md"""
## §4.2 An Example from Computational Chemistry
According to the Fermi-Dirac model, the distribution of particles over energy states in systems consisting of many identical particles that obey the Pauli exclusion principle is given by
```math
f_\beta(E) = \frac{1}{1 + \exp(\beta (E-\mu))},
```
where ``\mu`` is a chemical potential and ``\beta = \frac{1}{k_B T}`` the inverse temperature.
Choose a ``\beta``: $(@bind _beta0 Slider(5:100, show_value=true))
"""
# ╔═╡ 5522bc18-9699-11eb-2d67-759be6fc8d62
plot(x -> 1 / (1 + exp(_beta0 * x)), -1, 1, lw=2, label = "",
title = L"\beta = %$_beta0", size = (300, 200),
xlabel = L"E", ylabel = L"f_\beta(E)")
# ╔═╡ 4fe01af2-9699-11eb-1fb7-9b43a947b51a
md"""
We will return to the chemistry context momentarily but first simply explore the approximation of the Fermi-Dirac function by polynomials. To this end we set ``\mu = 0`` and assume ``E \in [-1, 1]``.
To determine the rate of convergence, we have to find the largest possible Bernstein ellipse. The singularlities of ``f`` are given by
```math
i \pi / \beta (1 + 2n), \qquad n \in \mathbb{Z}.
```
This touches the semi-minor axis provided that
```math
\frac12 (\rho - 1/\rho) = \pi / \beta
\qquad \Leftrightarrow \qquad
\rho = \sqrt{(\pi/\beta)^2 + 1} + \pi/\beta.
```
Choose a ``\beta``: $(@bind _beta1 Slider(5:100, show_value=true))
"""
# ╔═╡ b3bde6c8-9697-11eb-3ca2-1bacec3f2ad1
let β = _beta1, f = x -> 1 / (1 + exp(β * x)), NN = 6:6:110
ρ = sqrt( (π/β)^2 + 1 ) + π/β
xerr = range(-1, 1, length=2013)
err(N) = norm(f.(xerr) - chebeval.(xerr, Ref(chebinterp(f, N))), Inf)
plot(NN, err.(NN), lw=2, m=:o, ms=4, label = "error",
size = (300, 250), xlabel = L"N", ylabel = L"\Vert f - I_N f \Vert_\infty",
yscale = :log10, ylims = [1e-16, 1.0], legend = :bottomleft,
title = L"\beta = %$(β)")
plot!(NN[4:end], ρ.^(-NN[4:end]), lw=2, ls=:dash, c=:black,
label = L"\rho^{-N}")
end
# ╔═╡ 0c74de06-9699-11eb-1234-eb64590644d7
md"""
Although the rate is always exponential it deteriorates severely as ``\beta \to \infty``. Unfortunately these large values of ``\beta`` are imporant and realistic for applications. We will return to this momentarily.
"""
# ╔═╡ 330aec36-9699-11eb-24de-794562156ef4
md"""
### Approximation of a Matrix Function
Approximating ``f_\beta`` by a polynomial is in itself not useful. Since we have very accurate and performant means to evaluate ``e^x`` this is simply not necessary. But there is a different reason why a polynomial approximation is useful.
Let ``H \in \mathbb{R}^{P \times P}`` be a hamiltonian describing the interaction of ``P`` fermions (e.g. electrons). Many properties of this quantum mechanical system can be extracted from the *density matrix*,
```math
\Gamma := f_\beta(H).
```
A simple way to define this matrix function is to diagonalize ``H = Q \Lambda Q^*`` and then evaluate
```math
\Gamma = Q f_\beta(\Lambda) Q^*
= Q {\rm diag} \big( f_\beta(\lambda_1), \dots, f_\beta(\lambda_P) \big) Q^*
```
This requires diagonalisation of ``H`` an operation that costs ``O(P^3)`` operations.
Our idea now is to substitute ``f_\beta`` for a polynomial approximation and analyse the effect this has on the matrix function.
**Proposition:** If ``\|f_\beta - p_N\|_\infty \leq \epsilon`` on ``\sigma(H)`` then
```math
\| f_\beta(H) - p_N(H) \|_{\rm op} \leq \sup_{E \in \sigma(H)} \big| f_\beta(E) - p_N(E) \big|
```
"""
# ╔═╡ 53439934-975f-11eb-04f9-43dc19404d6b
md"""
We can evaluate ``p_N(H)`` with ``N`` matrix multiplications. If ``H`` is dense then we don't gain anything, but if ``H`` is sparse e.g. that it has only ``O(P)`` entries, then one can show that
```math
{\rm cost} \approx N^2 P \approx \beta^2 \log^2(\epsilon) P.
```
where ``\epsilon`` is the desired accuracy. For small or moderate ``\beta`` this is an excellent result allowing us to trade accuracy against computational cost, when ``P`` is very large.
However when ``\beta`` is large, then the poor convergence rate makes this a less attractive algorithm. E.g., if ``\sigma(H) \subset [-1,1]`` and we require an accuracy of ``\epsilon = 10^{-6}`` (this is a typical target) then we require that
```math
\beta \leq \frac{P}{13}
```
for the polynomial algorithm to be more efficient that the diagonalisation algorithm, which is quite restrictive. Note that ``\beta \in [30, 300]`` is a physically realistic range:
$(@bind _betap Slider(30:300, show_value=true))
"""
# ╔═╡ e23de7e6-98c5-11eb-1d25-df4887dab5f6
# Example Code on Evaluating a Matrix Polynomial
# ------------------------------------------------
let β = _betap, P = 10, N = 50, f = x -> 1/(1+exp(β*x))
# a random "hamiltonian" and the exact Γ via diagonalisation
H = 0.6 * (rand(P,P) .- 0.5); H = 0.5 * (H + H')
F = eigen(H)
Γ = F.vectors * Diagonal(f.(F.values)) * F.vectors'
# The polynomial approximant:
F̃ = chebinterp_naive(f, N)
ΓN = chebeval(H, F̃) # <----- can use the generic code!!!
norm(Γ - ΓN)
end
# ╔═╡ e3466610-9760-11eb-1562-61a6a1bf76bf
let β = _betap, P = 10, NN = 4:10:100, f = x -> 1 / (1 + exp(β * x))
# a random "hamiltonian" and the exact Γ
Random.seed!(3234)
H = 0.6 * (rand(P,P) .- 0.5); H = 0.5 * (H + H')
F = eigen(H)
Γ = F.vectors * Diagonal(f.(F.values)) * F.vectors'
errs = []
errsinf = []
xerr = range(-1, 1, length=2013)
for N in NN
F̃ = chebinterp_naive(f, N)
ΓN = chebeval(H, F̃)
push!(errs, norm(ΓN - Γ))
push!(errsinf, norm(f.(xerr) - chebeval.(xerr, Ref(F̃)), Inf))
end
plot(NN, errs, lw=2, ms=4, m=:o, label = "Matrix Function",
size = (450, 250), yscale = :log10, xlabel = L"N", ylabel = "error",
title = L"\beta = %$β", legend = :outertopright)
plot!(NN, errsinf, lw=2, ms=4, m=:o, label = "Scalar Function")
plot!(NN[5:end], 2*exp.( - π/β * NN[5:end] ), c = :black, lw=2, ls=:dash, label = "predicted")
end
# ╔═╡ 27a272c8-9695-11eb-3a5f-014392471e7a
md"""
### Rational Approximation of the Fermi-Dirac Function
A rational function is a function of the form
```math
r_{NM}(x) = \frac{p_N(x)}{q_M(x)},
```
were ``p_N, p_N`` are polynomials of, respectively, degrees ``N, M``. Note that ``p_N, p_M`` are both linear in its parameters, but ``r_{NM}`` is not. It is our first example of a **nonlinear approximation**. This makes both theory and practise significantly more challenging. In particular, there are many different techniques to construct and analyze rational approximants. Here, we will only give one example.
"""
# ╔═╡ a389d3a8-979a-11eb-0795-eb29979e1141
md"""
Recall that the Fermi-dirac function has poles at
```math
\zeta_n := i \pi/\beta (1 + 2n), \qquad n \in \mathbb{Z}.
```
"""
# ╔═╡ ce682a00-979a-11eb-1367-8780f4e400f9
_poles1 = let β = 10, f = x -> 1 / (1 + exp(β * x))
xx = range(-1,1,length=30)
yy = range(-5,5, length = 200)
X = xx * ones(length(yy))'; Y = ones(length(xx)) * yy'
contour(xx, yy, (x, y) -> abs(f(x + im * y)),
size = (200, 400),
xlabel = L"{\rm Re} z", ylabel = "Poles of the Fermi-Dirac Function",
colorbar = false, grid = false)
plot!([-1, 1], [0,0], lw=2, c=:black, label= "")
end
# ╔═╡ 18d70404-979c-11eb-326f-25e63c23456c
md"""
The poles are given by
```math
f_\beta(z) \sim -\frac{1}{\beta (z-z_n)} \qquad \text{as } z \to z_n
```
so we can remove them by considering a new function
```math
g(z) = f_\beta(z) - \frac{1}{\beta (z - z_n)}.
```
For example, let us remove the first three poles above and below the real axis, corresponding to the indices
```math
n = -3, -2, -1, 0, 1, 2.
```
then we get the following picture:
"""
# ╔═╡ b758732e-979c-11eb-2a76-5ddc8c37a6c2
_poles2 = let β = 10, f = x -> 1 / (1 + exp(β * x)), nn = -3:2
zz(n) = im * π/β * (1+2*n)
pole(n, z) = -1 / (β * (z - zz(n)))
xx = range(-1,1,length=30)
yy = range(-5,5, length = 200)
contour(xx, yy, (x, y) -> (z = x+im*y; abs(f(z) - sum(pole(n,z) for n in nn))),
size = (200, 400),
xlabel = L"{\rm Re} z", ylabel = "Poles of the Fermi-Dirac Function",
colorbar = false, grid=false)
plot!([-1, 1], [0,0], lw=2, c=:black, label= "")
# plot!(zeros(6), imag.(zz.(nn)), lw=0, ms=1, m=:o, c=:red, label= "")
end;
# ╔═╡ 20cd7ccc-97a1-11eb-301a-41af065eb0a0
plot(_poles1, _poles2, size = (400, 500))
# ╔═╡ 349741a8-979d-11eb-35f2-5db54ef72ad0
md"""
Why is this useful? Remember the Bernstein ellipse! We have constructed a new function ``g(z) = f(z) - \sum_n (-1)/(\beta (z-z_n))`` with a much larger region of analyticity to fit a Bernstein ellipse into.
"""
# ╔═╡ ffeb2d86-979f-11eb-21ea-176800eb4f5d
let β = 10, P1 = deepcopy(_poles1), P2 = deepcopy(_poles2)
# b = 0.5*(ρ-1/ρ) ⇔ ρ^2 - 2 b ρ - 1 = 0
b1 = π/β; ρ1 = b1 + sqrt(b1^2 + 1); a1 = 0.5 * (ρ1+1/ρ1)
b2 = 7*π/β; ρ2 = b2 + sqrt(b2^2 + 1); a2 = 0.5 * (ρ2+1/ρ2)
tt = range(0, 2π, length = 200)
plot!(P1, a1*cos.(tt), b1*sin.(tt), lw=2, c=:red, label = "",
title = L"\rho = %$(round(ρ1, digits=2))")
plot!(P2, a2*cos.(tt), b2*sin.(tt), lw=2, c=:red, label = "",
xlims = [-1.2, 1.2], title = L"\rho = %$(round(ρ2, digits=2))")
plot(P1, P2, size = (400, 500))
# @show a1, b1, π/β
# @show a2, b2, π/β * 7
end
# ╔═╡ 2f95c718-97a9-11eb-10b9-3d7751afe1ee
md"""
As the next step we construct a polynomial approximation of the Fermi-Dirac function with the poles remove, i.e.,
```math
p_N(x) \approx g_\beta := f_\beta(x) + \sum_{n = -3}^2 \frac{1}{\beta (z - z_n)}
```
for which we know we have the *much improved rate*
```math
\|p_N - g_\beta\|_\infty \lesssim \rho_3^{-N},
```
where ``\rho_3 = 7\pi/\beta + \sqrt{1 + (7\pi/\beta)^2}``. This translates into a rational approximant,
```math
r_{N+6, 6}(x) := p_N(x) - \sum_{n = -3}^2 \frac{1}{\beta (z - z_n)},
```
with the same rate,
```math
\| r_{N+6, 6} - f_\beta \|_\infty \lesssim \rho_3^{-N}.
```
"""
# ╔═╡ c18d41ea-97aa-11eb-13fc-a9bf95807fd2
md"""
In general, we can remove ``M`` poles above and below the real axis to obtain
```math
r_{N+2M, 2M}(x) := p_N(x) - \sum_{n = -M}^{M-1} \frac{1}{\beta (z - z_n)}
```
For the following convergence test, we choose ``M = 0, 1, 3, 6, 10``.
Choose ``\beta``: $(@bind _betarat Slider(5:100, show_value=true))
"""
# ╔═╡ ca1c8836-97da-11eb-3498-e1b35b94c46d
let NN = 5:5:30, MM = [0, 1, 3, 6, 10], β = _betarat
zz(n) = im * π/β * (1+2*n)
pole(n, z) = -1 / (β * (z - zz(n)))
xerr = range(-1, 1, length=2013)
err(g, N) = norm(g.(xerr) - chebeval.(xerr, Ref(chebinterp(g, N))), Inf)
P = plot(; size = (400, 250), yscale = :log10,
xlabel = L"N", ylabel = L"\Vert f - r_{N'M'} \Vert_\infty",
title = L"\beta = %$β", legend = :outertopright,
yrange = [1e-8, 1e0])
for (iM, M) in enumerate(MM)
g = (M == 0 ? x -> 1/(1+exp(β*x))
: x -> ( 1/(1+exp(β*x)) - sum( pole(m, x) for m = -M:M-1 ) ))
errs = err.(Ref(g), NN)
plot!(P, NN, errs, lw=2, c = iM, label = L"M = %$M")
b1 = (2*M+1) * π/β
ρ = b1 + sqrt(1 + b1^2)
lab = M == MM[end] ? L"\rho^{-N}" : ""
plot!(P, NN[4:end], (ρ).^(-NN[4:end]), c=:black, lw=2, ls=:dash, label = lab)
end
P
end
# ╔═╡ ee8fa624-97dc-11eb-24d6-033395124bd6
md"""
This looks extremely promising: we were able to obtain very accurate rational approximation with much lower polynomial degrees. Can you use these to evaluate our matrix functions? What is ``r(H)``? Basically, we need to understand that ``(z - z_0)^{-1}|_{z = H} = (H - z_0)^{-1}`` i.e. this requires a matrix inversion. More generally,
```math
\Gamma \approx r(H) = p_N(H) - \sum_{m = -M}^{M-1} \beta^{-1} (H - z_m)^{-1}.
```
A general matrix inversion requires again ``O(P^3)`` operations, but for sparse matrices this can be significantly reduced. Moreover, one rarely need the entire matrix ``\Gamma`` but rather its action on a vector, i.e., ``\Gamma \cdot v`` for some ``v\in \mathbb{R}^{P}``. In this case, we obtain
```math
\Gamma v = p_N(H) v - \sum_{m = -M}^{M-1} \beta^{-1} (H - z_m)^{-1} v.
```
If ``H`` is again sparse with ``O(P)`` entries then evaluating ``p_N(H) v`` would require ``O(NP)`` operations, while evaluating the rational contribution would require the solution of ``2M`` linear systems. Here the cost depends on the underlying dimensionality / connectivity of the hamiltonian and a detailed analysis goes beyond the scope of this course but typically the cost is ``O(P)`` in one dimension, ``O(P^{1/2})`` in 2D and ``O(P^2)`` in 3D. This already makes it clear that the tradeoff between the ``N, M`` parameters can be subtle and situation specific.
We will leave this discussion here as open-ended.
"""
# ╔═╡ 3fb12378-9695-11eb-0766-9faf92928ad2
md"""
## §4.3 Best Approximation via IRLSQ
While best approximation in the least squares sense (``L^2`` norm) is relatively easy to characterise and to implement at least in a suitable limit that we can also understand (cf. Lecture 3). But for max-norm approximation we have always been satisfies with "close to best" approximations, or just "good approximations. For example, we have proven results such as
```math
\| f - I_N f\|_\infty
\leq
C \log N \inf_{t_N \in \mathcal{T}_N'} \| f - t_N \|_\infty,
```
where ``I_N`` denotes the trigonometric interpolant. A fully analogous result holds for Chebyshev interpolation: if ``I_N`` now denotes the Chebyshev interpolant, then
```math
\| f - I_N f\|_\infty
\leq
C \log N \inf_{t_N \in \mathcal{P}_N} \| f - p_N \|_\infty,
```
But now we are going to explore a way to obtain *actual* best approximations. What we do here applied both to trigonometric and algebraic polynomials, but since today's lecture is about algebraic polynomials (and rational functions) we will focus on those. Students are strongly encouraged to experiment also with best approximation with trigonometric polynomials.
"""
# ╔═╡ 049e4ff2-982c-11eb-3094-3520f14eb76b
md"""
Thus, the problem we aim to solve is to *find* ``p_N^* \in \mathcal{P}_N`` *such that*
```math
\| p_N^* - f \|_\infty \leq \| p_N - f \|_\infty \qquad \forall p_N \in \mathcal{P}_N.
```
It turns out this problem has a unique solution; this is a non-trivial result which we won't prove here.
"""
# ╔═╡ 43d44336-982c-11eb-03d1-f990c92d1832
md"""
Let us begin by highlighting how the Chebyshev interpolant *fails* to be optimal. Let
```math
f(x) = \frac{1}{1+25 x^2}
```
and choose ``N`` : $(@bind _N3 Slider(6:2:20, show_value=true))
"""
# ╔═╡ 5101a786-982c-11eb-2d10-53d5638ec977
let f = x -> 1 / (1 + 25 * x^2), N = _N3
F̃ = chebinterp(f, N)
xp = range(-1, 1, length = 300)
err = abs.(f.(xp) - chebeval.(xp, Ref(F̃)))
plot(xp, err, lw=2, label = "error", size = (350, 200),
title = "Chebyshev interpolant")
end
# ╔═╡ c7cf9f9e-982c-11eb-072c-8367aaf306a0
md"""
We observe that the error is not equidistributed across the interval, this means that we could sacrifice some accuracy near the boundaries in return for lowering the error in the centre.
We can observe the same with a least-squares fit:
"""
# ╔═╡ 5f561f82-98c8-11eb-1719-65c2a8aea11d
begin
function chebfit(f, X, N; W = ones(length(X)))
F = W .* f.(X)
A = zeros(length(X), N+1)
for (m, x) in enumerate(X)
A[m, :] = W[m] * chebbasis(x, N)
end
return qr(A) \ F
end
end
# ╔═╡ d52d8e70-98c8-11eb-354a-374d26f6252a
md"""
choose ``N`` : $(@bind _N4 Slider(6:2:20, show_value=true))
"""
# ╔═╡ 92eba25e-98c8-11eb-0e32-9da6e0f5173b
let f = x -> 1 / (1 + 25 * x^2), N = _N4
F̃ = chebfit(f, range(-1, 1, length = 30 * N), N)
xp = range(-1, 1, length = 300)
err = abs.(f.(xp) - chebeval.(xp, Ref(F̃)))
plot(xp, err, lw=2, label = "error", size = (350, 200),
title = "Least Squares Approximant")
end
# ╔═╡ 00478e4e-98c9-11eb-1553-816d22e7dd7d
md"""
So the idea is to modify the least squares loss function,
```math
L({\bf c}) = \sum_m \big|f(x_m) - p({\bf c}; x_m) \big|^2
```
by putting more weight where the error is large,
```math
L({\bf c}) = \sum_m w_m \big|f(x_m) - p({\bf c}; x_m) \big|^2
```
Now of course we don't know beforehand where the error is large and we wouldn't know what weight to put there. So instead we simply "learn" this:
* perform a standard least squares fit
* estimate the error and put higher weights where the error is large
* iterate
"""
# ╔═╡ f88e49f2-98e3-11eb-1bf1-811331840a44
md"""
Let us look at one iteration of this idea.
STEP 1: Construct the initial LSQ solution
"""
# ╔═╡ 0f72a51e-98e4-11eb-3b5f-1728dd5c0e61
begin
f(x) = 1 / (1 + 25 * x^2)
N = 20
xfit = range(-1,1, length=400)
F̃ = chebfit(f, xfit, N)
end
# ╔═╡ f958b76a-98f1-11eb-3e8c-69136c5f8fac
plot(x -> abs(f(x) - chebeval(x, F̃)), -1, 1, lw=2, size = (300, 200), label = "")
# ╔═╡ 2946dbfa-98f2-11eb-2bcf-a1657769d9f1
md"""
**STEP 2:**
Now let's introduce the weights. Our goal is to get a max-norm approximation, so let's choose the weights so that the ``\ell^2`` becomes a little more like a max-norm:
```math
\sum_{m} |e(x_m)|^2 \qquad \leadsto \qquad
\sum_m \underset{=: W_m}{\underbrace{|e(x_m)|^\gamma}} \cdot |e(x_m)|^2.
```
This will put a little more weight on nodes ``x_m`` where the error is large. The parameter ``\gamma`` is a fudge parameter. Here we choose ``\gamma = 1``.
"""
# ╔═╡ 62e8454e-98f3-11eb-0a12-6554b76e3e18
begin
e = f.(xfit) .- chebeval.(xfit, Ref(F̃))
W = sqrt.(abs.(e))
F̃2 = chebfit(f, xfit, N; W = W)
end
# ╔═╡ a5da6f94-98f3-11eb-098f-b779f14a69f5
begin
plot(x -> abs(f(x) - chebeval(x, F̃)), -1, 1, lw=2, size = (300, 200), label = "iter-1")
plot!(x -> abs(f(x) - chebeval(x, F̃2)), -1, 1, lw=2, label = "iter-2")
end
# ╔═╡ b96c85a8-98f3-11eb-0d3b-45673e8b1e94
md"""
We see that the error has slightly increased near the edges and slightly decreased in the center. Let's do one more iteration.
"""
# ╔═╡ ccd6d074-98f3-11eb-1f74-71f3e87d3a29
begin
e2 = f.(xfit) .- chebeval.(xfit, Ref(F̃2))
W2 = W .* sqrt.(abs.(e2))
F̃3 = chebfit(f, xfit, N; W = W2)
end
# ╔═╡ e24421fc-98f3-11eb-32b0-3ff33d95fa18
begin
plot(x -> abs(f(x) - chebeval(x, F̃)), -1, 1, lw=2, size = (300, 200), label = "iter-1")
plot!(x -> abs(f(x) - chebeval(x, F̃2)), -1, 1, lw=2, label = "iter-2")
plot!(x -> abs(f(x) - chebeval(x, F̃3)), -1, 1, lw=2, label = "iter-3")
end
# ╔═╡ f063df16-98f3-11eb-0ea2-aff385524ac7
md"""
This looks extremely promising and suggests the following algorithm:
**Iteratively Reweighted Least Squares:**
1. Initialize ``W_m = 1``
2. Solve LSQ problem to obtain approximation ``p``
3. Update weights ``W_m \leftarrow W_m \cdot |f(x_m) - p(x_m)|^\gamma``
4. If weights have converged, stop, otherwise go to 2
**Remarks:**
* I've implemented this with a few tweaks for numerical stability in `tools.jl`.
* This can be implemented quite effectively for rational approximation as well.
* As far as I am aware there is no general convergence result for this method.
I want to finish now with one final experiment quantitatively exploring Chebyshev interpolation against max-norm best approximation. But we make the problem a little harder by approximating
```math
f_1(x) = \frac{1}{1 + 100 x^2}, \qquad f_2(x) = |\sin(\pi x)|^2
```
"""
# ╔═╡ c9c2b106-98f4-11eb-279e-2b61f36e2fe5
let f1 = x -> 1 / (1+100*x^2), NN1 = 6:6:100,
f2 = x -> abs(sin(π*x)), NN2 = (2).^(2:7)
xfit = range(-1,1, length = 3123)
xerr = range(-1,1, length = 2341)
interperr(f, N) = norm(f.(xerr) - chebeval.(xerr, Ref(chebinterp_naive(f, N))), Inf)
besterr(f, N) = norm(f.(xerr) - chebeval.(xerr, Ref(IRLSQ.bestcheb(f, xfit, N))), Inf)
ierrs1 = interperr.(f1, NN1)
berrs1 = besterr.(f1, NN1)
P1 = plot(NN1, ierrs1, lw=2, m=:o, ms=4, label = "Chebyshev")
plot!(P1, NN1, berrs1, lw=2, m=:o, ms=4, label = "best",
size = (350, 250), xlabel = L"N", ylabel = L"\Vert f - p_N \Vert",
yscale = :log10, title = L"f_1(x) = 1/(1+100 x^2)")
ierrs2 = interperr.(f2, NN2)
berrs2 = besterr.(f2, NN2)
P2 = plot(NN2, ierrs2, lw=2, m=:o, ms=4, label = "Chebyshev")
plot!(P2, NN2, berrs2, lw=2, m=:o, ms=4, label = "best",
size = (350, 250), xlabel = L"N", ylabel = L"\Vert f - p_N \Vert",
xscale = :log10, yscale = :log10, title = L"f_2(x) = |\sin(\pi x)|^3")
plot(P1, P2, size = (600, 250))
end
# ╔═╡ 90785a4e-9981-11eb-368e-cdf087a39217
md"""
Further reading:
* L. N. Trefethen, Approximation Theory and Approximation Practice
* Y. Nakatsukasa, O. Sète, L. N. Trefethen, The AAA algorithm for rational approximation, arXiv:1612.00337
* Lin, L. and Chen, M. and Yang, C. and He, L., Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected inversion, J. Phys. Condens. Matter
"""
# ╔═╡ Cell order:
# ╟─66772e00-9981-11eb-1941-d9132b99c780
# ╟─465e7582-95c7-11eb-0c7b-ed7dddc24b4f
# ╟─58d79c34-95c7-11eb-0679-eb9741761c10
# ╟─9c169770-95c7-11eb-125a-4f174da56d36
# ╟─05ec7c1e-95c8-11eb-176a-3372a765d4d7
# ╟─311dd26e-95ca-11eb-2ff5-03a53a662a62
# ╟─4428c460-95c8-11eb-16fc-6327acc80bb6
# ╟─3533717c-9630-11eb-3fc6-3f4b29eaa63a
# ╟─467c7f76-9630-11eb-1cdb-6dedae3c459f
# ╟─6cbcac96-95ca-11eb-05f9-c7a781b38061
# ╠═77dcea8e-95ca-11eb-2cf1-ad342f0f6d7d
# ╟─27f7e2c8-95cb-11eb-28ca-dfe90be89670
# ╟─cc8fe0f4-95cd-11eb-04ec-d3fc8cced91b
# ╟─dfc0866c-95cb-11eb-1869-7bd67468c233
# ╟─f3cd1326-95cd-11eb-192a-efc3371d17b6
# ╟─5181b8f4-95cf-11eb-30fe-cd93f4ed0012
# ╟─7661921a-962a-11eb-04c0-5b7e486aea05
# ╟─4ca65bec-962b-11eb-3aa2-d5500fd24677
# ╠═69dfa184-962b-11eb-0ed2-c17aa6c15a45
# ╟─3ef9e58c-962c-11eb-0172-a700d2f7e72c
# ╟─19509e38-962d-11eb-1f5c-811188a57261
# ╟─16591e8e-9631-11eb-1157-992452ed6514
# ╟─7b835804-9694-11eb-0692-8dab0a07203e
# ╟─c1e69df8-9694-11eb-2dde-673888b5f7e2
# ╟─5522bc18-9699-11eb-2d67-759be6fc8d62
# ╟─4fe01af2-9699-11eb-1fb7-9b43a947b51a
# ╠═b3bde6c8-9697-11eb-3ca2-1bacec3f2ad1
# ╟─0c74de06-9699-11eb-1234-eb64590644d7
# ╟─330aec36-9699-11eb-24de-794562156ef4
# ╠═53439934-975f-11eb-04f9-43dc19404d6b
# ╟─e23de7e6-98c5-11eb-1d25-df4887dab5f6
# ╠═e3466610-9760-11eb-1562-61a6a1bf76bf
# ╟─27a272c8-9695-11eb-3a5f-014392471e7a
# ╟─a389d3a8-979a-11eb-0795-eb29979e1141
# ╟─ce682a00-979a-11eb-1367-8780f4e400f9
# ╟─18d70404-979c-11eb-326f-25e63c23456c
# ╟─b758732e-979c-11eb-2a76-5ddc8c37a6c2
# ╟─20cd7ccc-97a1-11eb-301a-41af065eb0a0
# ╟─349741a8-979d-11eb-35f2-5db54ef72ad0
# ╟─ffeb2d86-979f-11eb-21ea-176800eb4f5d
# ╟─2f95c718-97a9-11eb-10b9-3d7751afe1ee
# ╟─c18d41ea-97aa-11eb-13fc-a9bf95807fd2
# ╟─ca1c8836-97da-11eb-3498-e1b35b94c46d
# ╟─ee8fa624-97dc-11eb-24d6-033395124bd6
# ╟─3fb12378-9695-11eb-0766-9faf92928ad2
# ╟─049e4ff2-982c-11eb-3094-3520f14eb76b
# ╟─43d44336-982c-11eb-03d1-f990c92d1832
# ╟─5101a786-982c-11eb-2d10-53d5638ec977
# ╟─c7cf9f9e-982c-11eb-072c-8367aaf306a0
# ╠═5f561f82-98c8-11eb-1719-65c2a8aea11d
# ╟─d52d8e70-98c8-11eb-354a-374d26f6252a
# ╟─92eba25e-98c8-11eb-0e32-9da6e0f5173b
# ╟─00478e4e-98c9-11eb-1553-816d22e7dd7d
# ╟─f88e49f2-98e3-11eb-1bf1-811331840a44
# ╠═0f72a51e-98e4-11eb-3b5f-1728dd5c0e61
# ╟─f958b76a-98f1-11eb-3e8c-69136c5f8fac
# ╟─2946dbfa-98f2-11eb-2bcf-a1657769d9f1
# ╠═62e8454e-98f3-11eb-0a12-6554b76e3e18
# ╟─a5da6f94-98f3-11eb-098f-b779f14a69f5
# ╟─b96c85a8-98f3-11eb-0d3b-45673e8b1e94
# ╠═ccd6d074-98f3-11eb-1f74-71f3e87d3a29
# ╟─e24421fc-98f3-11eb-32b0-3ff33d95fa18
# ╟─f063df16-98f3-11eb-0ea2-aff385524ac7
# ╟─c9c2b106-98f4-11eb-279e-2b61f36e2fe5
# ╟─90785a4e-9981-11eb-368e-cdf087a39217