diff --git a/implementations/ZType_integers.v b/implementations/ZType_integers.v index 65d98ed..dd296b0 100644 --- a/implementations/ZType_integers.v +++ b/implementations/ZType_integers.v @@ -1,6 +1,6 @@ Require MathClasses.implementations.stdlib_binary_integers MathClasses.theory.integers MathClasses.orders.semirings. -Require Import +Require Import MathClasses.misc.stdpp_tactics Bignums.SpecViaZ.ZSig Bignums.SpecViaZ.ZSigZAxioms Coq.NArith.NArith Coq.ZArith.ZArith MathClasses.implementations.nonneg_integers_naturals MathClasses.interfaces.orders MathClasses.interfaces.abstract_algebra MathClasses.interfaces.integers MathClasses.interfaces.additional_operations. @@ -52,7 +52,7 @@ Instance inject_ZType_Z: Cast t Z := to_Z. #[global] Instance: Proper ((=) ==> (=)) to_Z. -Proof. intros x y E. easy. Qed. +Proof. intros x y E. done. Qed. #[global] Instance: SemiRing_Morphism to_Z. @@ -211,7 +211,7 @@ Proof. intros x1. apply axioms.pow_0_r. intros x [n ?]. unfold_equiv. unfold "^", ZType_pow. simpl. - rewrite <-axioms.pow_succ_r; try easy. + rewrite <-axioms.pow_succ_r; try done. now rewrite ZType_succ_1_plus. Qed. @@ -230,7 +230,7 @@ Proof. rewrite spec_mul, 2!spec_pow_N. rewrite rings.preserves_plus, Z.pow_add_r. now rewrite rings.preserves_1, Z.pow_1_r. - easy. + done. now apply Z_of_N_le_0. Qed. diff --git a/implementations/dyadics.v b/implementations/dyadics.v index 1ec24d2..aae31ef 100644 --- a/implementations/dyadics.v +++ b/implementations/dyadics.v @@ -3,8 +3,8 @@ for some [Integers] implementation [Z]. These numbers form a ring and can be embedded into any [Rationals] implementation [Q]. *) -Require Import - Coq.setoid_ring.Ring MathClasses.interfaces.abstract_algebra +Require Import + Coq.setoid_ring.Ring MathClasses.interfaces.abstract_algebra MathClasses.interfaces.integers MathClasses.interfaces.naturals MathClasses.interfaces.rationals MathClasses.interfaces.additional_operations MathClasses.interfaces.orders MathClasses.orders.minmax MathClasses.orders.integers MathClasses.orders.rationals diff --git a/implementations/list.v b/implementations/list.v index a8dadc7..f25e278 100644 --- a/implementations/list.v +++ b/implementations/list.v @@ -1,4 +1,4 @@ -Require Import +Require Import MathClasses.misc.stdpp_tactics Coq.Lists.List Coq.Lists.SetoidList MathClasses.interfaces.abstract_algebra MathClasses.interfaces.monads MathClasses.theory.monads. Import ListNotations. @@ -29,7 +29,7 @@ Section equivlistA_misc. Proof. intros E. now eapply InA_nil, E, InA_cons_hd. Qed. Lemma equivlistA_nil_eq l : equivlistA eqA l [] → l ≡ []. - Proof. induction l. easy. intros E. edestruct equivlistA_cons_nil; eauto. Qed. + Proof. induction l. done. intros E. edestruct equivlistA_cons_nil; eauto. Qed. Lemma InA_double_head z x l : InA eqA z (x :: x :: l) ↔ InA eqA z (x :: l). Proof. split; intros E1; auto. inversion_clear E1; auto. Qed. @@ -91,14 +91,14 @@ Section equivlistA_misc. Lemma PermutationA_app_head l₁ l₂ k : PermutationA l₁ l₂ → PermutationA (k ++ l₁) (k ++ l₂). - Proof. intros. induction k. easy. apply permA_skip; intuition. Qed. + Proof. intros. induction k. done. apply permA_skip; intuition. Qed. Global Instance PermutationA_app : Proper (PermutationA ==> PermutationA ==> PermutationA) (@app A). Proof. intros l₁ l₂ Pl k₁ k₂ Pk. induction Pl. - easy. + done. now apply permA_skip. etransitivity. rewrite <-!app_comm_cons. now apply permA_swap. @@ -113,7 +113,7 @@ Section equivlistA_misc. Lemma PermutationA_cons_append l x : PermutationA (x :: l) (l ++ x :: nil). - Proof. induction l. easy. simpl. rewrite <-IHl. intuition. Qed. + Proof. induction l. done. simpl. rewrite <-IHl. intuition. Qed. Lemma PermutationA_app_comm l₁ l₂ : PermutationA (l₁ ++ l₂) (l₂ ++ l₁). diff --git a/implementations/list_finite_set.v b/implementations/list_finite_set.v index 91f2534..7ffc84d 100644 --- a/implementations/list_finite_set.v +++ b/implementations/list_finite_set.v @@ -1,4 +1,4 @@ -Require Import +Require Import MathClasses.misc.stdpp_tactics Coq.Lists.List Coq.Lists.SetoidList MathClasses.implementations.list MathClasses.interfaces.abstract_algebra MathClasses.interfaces.finite_sets MathClasses.interfaces.orders MathClasses.theory.lattices MathClasses.orders.lattices. @@ -48,7 +48,7 @@ Proof. firstorder. Qed. Global Instance: Proper ((=) ==> (=) ==> iff) listset_in. Proof. intros x y E1 l k E2. - transitivity (listset_in x k). easy. + transitivity (listset_in x k). done. unfold listset_in. now rewrite E1. Qed. @@ -108,7 +108,7 @@ Lemma listset_to_list_preserves_join l k : Proof. destruct l as [l Pl], k as [k Pk]. unfold join, listset_join, listset_join_raw. simpl. clear Pk Pl. - induction l; simpl; intros; [easy|]. + induction l; simpl; intros; [done|]. now rewrite <-IHl, listset_add_raw_cons. Qed. @@ -161,7 +161,7 @@ Section listset_extend. Proof. induction 1; simpl. reflexivity. - apply sg_op_proper. now apply sm_proper. easy. + apply sg_op_proper. now apply sm_proper. done. now rewrite !associativity, (commutativity (f _)). etransitivity; eassumption. Qed. @@ -180,7 +180,7 @@ Section listset_extend. fset_extend f ({{x}} ⊔ l) = f x ⊔ fset_extend f l. Proof. destruct l as [l Pl]. unfold fset_extend, list_extend. simpl. clear Pl. - induction l; simpl; [easy|]. + induction l; simpl; [done|]. case (decide_rel _); intros E. now rewrite E, associativity, (idempotency (&) _). now rewrite IHl, 2!associativity, (commutativity (f _)). @@ -215,7 +215,7 @@ Proof. solve_proper. now rewrite preserves_bottom. intros x l E2 E3. rewrite list_extend_add, preserves_join, E3. - apply sg_op_proper; [|easy]. symmetry. now apply E1. + apply sg_op_proper; [|done]. symmetry. now apply E1. Qed. Instance: FSetContainsSpec A. @@ -251,7 +251,7 @@ Proof. intros E1; inversion E1. case (decide_rel); intros ? E1; intuition. inversion_clear E1 as [?? E2|]; auto. now rewrite E2. - intros [E1 E2]. induction l; simpl; [easy|]. + intros [E1 E2]. induction l; simpl; [done|]. case (decide_rel); intros E3. inversion_clear E1; intuition. inversion_clear E1 as [?? E4|]; intuition. @@ -292,7 +292,7 @@ Proof. case (decide_rel); intros ? E1. intuition. inversion_clear E1 as [?? E2|]; auto. now rewrite E2. - intros [E1 E2]. induction l; simpl; [easy|]. + intros [E1 E2]. induction l; simpl; [done|]. case (decide_rel); intros E3. inversion_clear E1 as [?? E4|]; intuition. destruct E2. now rewrite E4. diff --git a/implementations/option.v b/implementations/option.v index 789f7ba..2c47eec 100644 --- a/implementations/option.v +++ b/implementations/option.v @@ -1,5 +1,5 @@ -Require Import - MathClasses.interfaces.abstract_algebra MathClasses.interfaces.monads MathClasses.theory.jections MathClasses.theory.monads. +Require Import MathClasses.misc.stdpp_tactics + MathClasses.interfaces.abstract_algebra MathClasses.interfaces.monads MathClasses.theory.jections MathClasses.theory.monads MathClasses.misc.stdpp_tactics. Inductive option_equiv A `{Equiv A} : Equiv (option A) := | option_equiv_Some : Proper ((=) ==> (=)) Some @@ -27,7 +27,7 @@ Section contents. intros x y z E. revert z. induction E. intros z E2. inversion_clear E2. apply option_equiv_Some. etransitivity; eassumption. - easy. + done. Qed. Global Instance: Setoid_Morphism Some. @@ -59,7 +59,7 @@ Section contents. now apply E1. symmetry. now apply E1. now apply E1. - easy. + done. Qed. Global Program Instance option_dec `(A_dec : ∀ x y : A, Decision (x = y)) @@ -111,7 +111,7 @@ Instance option_bind_proper `{Setoid A} `{Setoid (option B)}: Proper (=) (option Proof. intros f₁ f₂ E1 x₁ x₂ [?|]. unfold option_bind. simpl. now apply E1. - easy. + done. Qed. #[global] @@ -122,8 +122,8 @@ Proof. now intros ? ? ? [?|]. intros A ? B ? C ? ? f [???] g [???] [x|] [y|] E; try solve [inversion_clear E]. setoid_inject. cut (g x = g y); [|now rewrite E]. - case (g x), (g y); intros E2; inversion_clear E2. now f_equiv. easy. - easy. + case (g x), (g y); intros E2; inversion_clear E2. now f_equiv. done. + done. Qed. #[global] @@ -140,7 +140,7 @@ Section map. Proof. pose proof (injective_mor f). repeat (split; try apply _). - intros [x|] [y|] E; try solve [inversion E | easy]. + intros [x|] [y|] E; try solve [inversion E | done]. apply sm_proper. apply (injective f). now apply (injective Some). Qed. End map. diff --git a/implementations/polynomials.v b/implementations/polynomials.v index 494698f..3114f10 100644 --- a/implementations/polynomials.v +++ b/implementations/polynomials.v @@ -1,4 +1,5 @@ -Require Import +Require Import + MathClasses.misc.stdpp_tactics Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.interfaces.vectorspace @@ -63,7 +64,7 @@ Section contents. Lemma poly_eq_cons : ∀ (a b : R) (p q : poly), (a = b /\ poly_eq p q) <-> poly_eq (a :: p) (b :: q). - Proof. easy. Qed. + Proof. done. Qed. Lemma poly_eq_ind (P: poly → poly → Prop) (case_0: ∀ p p', poly_eq_zero p → poly_eq_zero p' → P p p') @@ -134,7 +135,7 @@ Section contents. Proof. intro eqp; revert q. induction eqp as [|x p eqx eqp IH] using poly_eq_zero_ind. - { easy. } + { done. } intros [|y q]. { cbn -[poly_eq_zero]. rewrite poly_eq_zero_cons; auto. } @@ -143,7 +144,7 @@ Section contents. Qed. Instance plus_commutative: Commutative (+). - Proof with (try easy); cbn. + Proof with (try done); cbn. intro. induction x as [|x p IH]; intros [|y q]... split; auto; ring. @@ -179,7 +180,7 @@ Section contents. Qed. Instance plus_associative: Associative (+). - Proof with try easy. + Proof with try done. do 2 red; induction x as [|x p IH]... intros [|y q]... intros [|z r]... @@ -200,7 +201,7 @@ Section contents. Lemma poly_negate_zero p: poly_eq_zero p ↔ poly_eq_zero (-p). Proof. induction p as [|x p IH]. - { easy. } + { done. } cbn. rewrite !poly_eq_zero_cons, IH. enough (x = 0 ↔ -x = 0) by tauto. @@ -219,7 +220,7 @@ Section contents. Proof. intro; rewrite poly_eq_p_zero. induction x as [|x p IH]; cbn. - { easy. } + { done. } rewrite poly_eq_zero_cons; split; auto. ring. Qed. @@ -239,7 +240,7 @@ Section contents. Lemma poly_scalar_mult_0_r q c: poly_eq_zero q → poly_eq_zero (c · q). Proof. induction q as [|x q IH]. - { easy. } + { done. } cbn. rewrite !poly_eq_zero_cons. intros [-> ?]; split; auto. @@ -257,36 +258,36 @@ Section contents. Qed. Lemma poly_scalar_mult_1_r x: x · 1 = [x]. - Proof. cbn; split; [ring|easy]. Qed. + Proof. cbn; split; [ring|done]. Qed. Instance poly_scalar_mult_1_l: LeftIdentity (·) 1. Proof. - red; induction y as [|y p IH]; [easy|cbn]. + red; induction y as [|y p IH]; [done|cbn]. split; auto; ring. Qed. Instance poly_scalar_mult_dist_l: LeftHeteroDistribute (·) (+) (+). Proof. intros a p. - induction p as [|x p IH]; intros [|y q]; [easy..|cbn]. + induction p as [|x p IH]; intros [|y q]; [done..|cbn]. split; auto; ring. Qed. Instance poly_scalar_mult_dist_r: RightHeteroDistribute (·) (+) (+). Proof. intros a b x. - induction x as [|x p IH]; [easy|cbn]. + induction x as [|x p IH]; [done|cbn]. split; auto; ring. Qed. Instance poly_scalar_mult_assoc: HeteroAssociative (·) (·) (·) (.*.). Proof. intros a b x. - induction x as [|p x IH]; [easy|cbn]. + induction x as [|p x IH]; [done|cbn]. split; auto; ring. Qed. Lemma poly_scalar_mult_0_l q c: c = 0 → poly_eq_zero (c · q). Proof. intros ->. - induction q as [|x q IH]; [easy|cbn]. + induction q as [|x q IH]; [done|cbn]. rewrite poly_eq_zero_cons; split; auto. ring. Qed. @@ -299,7 +300,7 @@ Section contents. Lemma poly_mult_0_l p q: poly_eq_zero p → poly_eq_zero (p * q). Proof. - induction 1 using poly_eq_zero_ind; [easy|cbn]. + induction 1 using poly_eq_zero_ind; [done|cbn]. apply poly_eq_zero_plus. - now apply poly_scalar_mult_0_l. - rewrite poly_eq_zero_cons; auto. @@ -307,7 +308,7 @@ Section contents. Lemma poly_mult_0_r p q: poly_eq_zero q → poly_eq_zero (p * q). Proof. - induction p as [|x p IH]; [easy|cbn]. + induction p as [|x p IH]; [done|cbn]. intro eq0. apply poly_eq_zero_plus. - now apply poly_scalar_mult_0_r. @@ -330,12 +331,12 @@ Section contents. Instance poly_mult_left_distr: LeftDistribute (.*.) (+). Proof. intros p q r. - induction p as [|x p IH]; [easy|cbn]. + induction p as [|x p IH]; [done|cbn]. rewrite (distribute_l x q r ). - rewrite <- !associativity; apply poly_plus_proper; [easy|]. + rewrite <- !associativity; apply poly_plus_proper; [done|]. rewrite associativity, (commutativity (0::p*q)), <- associativity. - apply poly_plus_proper; [easy|]. - cbn; split; [ring|easy]. + apply poly_plus_proper; [done|]. + cbn; split; [ring|done]. Qed. Lemma poly_mult_cons_r p q x: p * (x::q) = x · p + (0 :: p * q). @@ -343,7 +344,7 @@ Section contents. induction p as [|y p IH]; cbn; auto. split; auto. rewrite IH, !associativity, (commutativity (y · q)). - split; try easy. + split; try done. ring. Qed. @@ -383,7 +384,7 @@ Section contents. Qed. Instance poly_mult_assoc: Associative (.*.). - Proof with (try easy); cbn. + Proof with (try done); cbn. intros x. induction x as [|x p IH]... intros q r; cbn. diff --git a/implementations/stdlib_binary_integers.v b/implementations/stdlib_binary_integers.v index 9dd7150..ad3da76 100644 --- a/implementations/stdlib_binary_integers.v +++ b/implementations/stdlib_binary_integers.v @@ -1,6 +1,6 @@ Require MathClasses.interfaces.naturals MathClasses.theory.naturals MathClasses.implementations.peano_naturals MathClasses.theory.integers. -Require Import +Require Import MathClasses.misc.stdpp_tactics Coq.ZArith.BinInt Coq.setoid_ring.Ring Coq.Arith.Arith Coq.NArith.NArith Coq.ZArith.ZArith Coq.Numbers.Integer.Binary.ZBinary MathClasses.interfaces.abstract_algebra MathClasses.interfaces.integers MathClasses.implementations.natpair_integers MathClasses.implementations.stdlib_binary_naturals @@ -152,7 +152,7 @@ Proof. rapply semirings.dec_full_pseudo_srorder. split. intro. split. now apply Zorder.Zlt_le_weak. now apply Zorder.Zlt_not_eq. - intros [E1 E2]. destruct (Zorder.Zle_lt_or_eq _ _ E1). easy. now destruct E2. + intros [E1 E2]. destruct (Zorder.Zle_lt_or_eq _ _ E1). done. now destruct E2. Qed. (* * Embedding of the Peano naturals into [Z] *) diff --git a/implementations/stdlib_rationals.v b/implementations/stdlib_rationals.v index 5334249..8a5d097 100644 --- a/implementations/stdlib_rationals.v +++ b/implementations/stdlib_rationals.v @@ -1,6 +1,6 @@ Require - MathClasses.implementations.stdlib_binary_integers Coq.setoid_ring.Field Coq.QArith.Qfield MathClasses.theory.rationals. -Require Import + MathClasses.implementations.stdlib_binary_integers Coq.setoid_ring.Field Coq.QArith.Qfield MathClasses.theory.rationals . +Require Import MathClasses.misc.stdpp_tactics Coq.ZArith.ZArith Coq.setoid_ring.Ring Coq.QArith.QArith_base Coq.QArith.Qabs Coq.QArith.Qpower MathClasses.interfaces.abstract_algebra MathClasses.interfaces.rationals @@ -61,7 +61,7 @@ Program Instance Q_to_fracZ: Cast Q (Frac Z) := λ x, frac (Qnum x) (Zpos (Qden #[global] Instance: Proper ((=) ==> (=)) Q_to_fracZ. -Proof. intros ? ? E. easy. Qed. +Proof. intros ? ? E. done. Qed. #[global] Instance: SemiRing_Morphism Q_to_fracZ. @@ -69,7 +69,7 @@ Proof. repeat (split; try apply _). Qed. #[global] Instance: Injective Q_to_fracZ. -Proof. split; try apply _. intros ? ? E. easy. Qed. +Proof. split; try apply _. intros ? ? E. done. Qed. #[global] Instance: RationalsToFrac Q := rationals.alt_to_frac Q_to_fracZ. @@ -92,7 +92,7 @@ Proof. exact Qle_antisym. apply (rings.from_ring_order (Rle:=Q_le)). repeat (split; try apply _). - intros. apply Qplus_le_compat. now apply Qle_refl. easy. + intros. apply Qplus_le_compat. now apply Qle_refl. done. intros. now apply Qmult_le_0_compat. Qed. @@ -110,7 +110,7 @@ Proof. rapply (semirings.dec_full_pseudo_srorder (R:=Q)). split. intro. split. now apply Zorder.Zlt_le_weak. now apply Zorder.Zlt_not_eq. - intros [E1 E2]. destruct (Zorder.Zle_lt_or_eq _ _ E1). easy. now destruct E2. + intros [E1 E2]. destruct (Zorder.Zle_lt_or_eq _ _ E1). done. now destruct E2. Qed. #[global] diff --git a/misc/stdpp_tactics.v b/misc/stdpp_tactics.v new file mode 100644 index 0000000..b853f1d --- /dev/null +++ b/misc/stdpp_tactics.v @@ -0,0 +1,34 @@ +Require Import MathClasses.misc.util. +From Coq Require Export RelationClasses Relation_Definitions Lia. + +Module FastDoneTactic. + +Ltac fast_done := + solve + [ eassumption + | symmetry; eassumption + | apply not_symmetry; eassumption + | reflexivity ]. +Tactic Notation "fast_by" tactic(tac) := + tac; fast_done. + +End FastDoneTactic. + +Import FastDoneTactic. + +Ltac done := + solve + [ repeat first + [ fast_done + | solve [trivial] + (* All the tactics below will introduce themselves anyway, or make no sense + for goals of product type. So this is a good place for us to do it. *) + | progress intros + | solve [symmetry; trivial] + | solve [apply not_symmetry; trivial] + | discriminate + | contradiction + | split + | match goal with H : ~ _ |- _ => case H; clear H; fast_done end ] + ]. + diff --git a/orders/dec_fields.v b/orders/dec_fields.v index b28c3ab..c925547 100644 --- a/orders/dec_fields.v +++ b/orders/dec_fields.v @@ -1,4 +1,4 @@ -Require Import +Require Import MathClasses.misc.stdpp_tactics Coq.Relations.Relation_Definitions Coq.setoid_ring.Ring MathClasses.interfaces.abstract_algebra MathClasses.interfaces.orders MathClasses.theory.rings MathClasses.theory.dec_fields. Require Export @@ -22,7 +22,7 @@ Proof. destruct (decide (x = 0)) as [E2 | E2]. now rewrite E2, dec_recip_0. apply lt_le. apply pos_dec_recip_compat. - apply lt_iff_le_ne. split. easy. now apply not_symmetry. + apply lt_iff_le_ne. split. done. now apply not_symmetry. Qed. Lemma neg_dec_recip_compat x : x < 0 → /x < 0. diff --git a/orders/lattices.v b/orders/lattices.v index 8ac47e6..b3a1843 100644 --- a/orders/lattices.v +++ b/orders/lattices.v @@ -1,4 +1,4 @@ -Require Import +Require Import MathClasses.misc.stdpp_tactics MathClasses.interfaces.abstract_algebra MathClasses.interfaces.orders MathClasses.orders.maps MathClasses.theory.lattices. (* @@ -49,7 +49,7 @@ Section join_semilattice_order. Qed. Lemma join_le_compat_r x y z : z ≤ x → z ≤ x ⊔ y. - Proof. intros E. transitivity x. easy. apply join_ub_l. Qed. + Proof. intros E. transitivity x. done. apply join_ub_l. Qed. Lemma join_le_compat_l x y z : z ≤ y → z ≤ x ⊔ y. Proof. intros E. rewrite commutativity. now apply join_le_compat_r. Qed. @@ -133,7 +133,7 @@ Section meet_semilattice_order. Qed. Lemma meet_le_compat_r x y z : x ≤ z → x ⊓ y ≤ z. - Proof. intros E. transitivity x. apply meet_lb_l. easy. Qed. + Proof. intros E. transitivity x. apply meet_lb_l. done. Qed. Lemma meet_le_compat_l x y z : y ≤ z → x ⊓ y ≤ z. Proof. intros E. rewrite commutativity. now apply meet_le_compat_r. Qed. @@ -174,13 +174,13 @@ Section lattice_order. Proof. intros x y. apply (antisymmetry (≤)). now apply meet_lb_l. - apply meet_le. easy. now apply join_ub_l. + apply meet_le. done. now apply join_ub_l. Qed. Instance: Absorption (⊔) (⊓). Proof. intros x y. apply (antisymmetry (≤)). - apply join_le. easy. now apply meet_lb_l. + apply join_le. done. now apply meet_lb_l. now apply join_ub_l. Qed. @@ -293,8 +293,8 @@ Section order_preserving_join_sl_mor. Proof. repeat (split; try apply _). intros x y. case (total (≤) x y); intros E. - rewrite 2!join_r; try easy. now apply (order_preserving _). - rewrite 2!join_l; try easy. now apply (order_preserving _). + rewrite 2!join_r; try done. now apply (order_preserving _). + rewrite 2!join_l; try done. now apply (order_preserving _). Qed. End order_preserving_join_sl_mor. @@ -309,7 +309,7 @@ Section order_preserving_meet_sl_mor. Proof. repeat (split; try apply _). intros x y. case (total (≤) x y); intros E. - rewrite 2!meet_l; try easy. now apply (order_preserving _). - rewrite 2!meet_r; try easy. now apply (order_preserving _). + rewrite 2!meet_l; try done. now apply (order_preserving _). + rewrite 2!meet_r; try done. now apply (order_preserving _). Qed. End order_preserving_meet_sl_mor. diff --git a/orders/maps.v b/orders/maps.v index 5b70258..d9efa93 100644 --- a/orders/maps.v +++ b/orders/maps.v @@ -1,4 +1,4 @@ -Require Import +Require Import MathClasses.misc.stdpp_tactics MathClasses.interfaces.abstract_algebra MathClasses.interfaces.orders MathClasses.orders.orders MathClasses.theory.setoids MathClasses.theory.strong_setoids. Local Existing Instance order_morphism_po_a. @@ -247,11 +247,11 @@ Proof. pose proof po_setoid. repeat (split; try apply _). Qed. #[global] Instance id_order_preserving `{PartialOrder A} : OrderPreserving (@id A). -Proof. split; try apply _. easy. Qed. +Proof. split; try apply _. done. Qed. #[global] Instance id_order_reflecting `{PartialOrder A} : OrderReflecting (@id A). -Proof. split; try apply _. easy. Qed. +Proof. split; try apply _. done. Qed. Section composition. Context `{Equiv A} `{Equiv B} `{Equiv C} @@ -297,7 +297,7 @@ Section propers. Proof. assert (∀ (f g : A → B), g = f → Order_Morphism f → Order_Morphism g) as P. intros f g E [[? ? ?] ?]. - split; auto. apply morphism_proper with f. easy. split; easy. + split; auto. apply morphism_proper with f. done. split; done. firstorder. Qed. @@ -329,7 +329,7 @@ Section propers. eapply order_preserving_proper; eauto. now apply _. eapply order_reflecting_proper; eauto. now apply _. intros f g ?; split; intro E. - apply P with f. destruct E as [[[[? ?]]]]. now symmetry. easy. + apply P with f. destruct E as [[[[? ?]]]]. now symmetry. done. now apply P with g. Qed. End propers. diff --git a/orders/minmax.v b/orders/minmax.v index 01df5c1..1ec7710 100644 --- a/orders/minmax.v +++ b/orders/minmax.v @@ -1,4 +1,4 @@ -Require Import +Require Import MathClasses.misc.stdpp_tactics MathClasses.interfaces.abstract_algebra MathClasses.interfaces.orders MathClasses.orders.orders MathClasses.orders.lattices MathClasses.theory.setoids. @@ -24,14 +24,14 @@ Section contents. Global Instance: LatticeOrder (≤). Proof. repeat (split; try apply _); unfold join, meet, max, min, sort; - intros; case (decide_rel _); try easy; now apply le_flip. + intros; case (decide_rel _); try done; now apply le_flip. Qed. Instance: LeftDistribute max min. Proof. intros x y z. unfold min, max, sort. repeat case (decide_rel _); simpl; try solve [intuition]. - intros. apply (antisymmetry (≤)); [|easy]. now transitivity y; apply le_flip. + intros. apply (antisymmetry (≤)); [|done]. now transitivity y; apply le_flip. intros. now apply (antisymmetry (≤)). Qed. diff --git a/orders/nat_int.v b/orders/nat_int.v index 22215eb..90bcc03 100644 --- a/orders/nat_int.v +++ b/orders/nat_int.v @@ -1,4 +1,4 @@ -Require Import +Require Import MathClasses.misc.stdpp_tactics Coq.setoid_ring.Ring MathClasses.interfaces.abstract_algebra MathClasses.interfaces.naturals MathClasses.interfaces.orders MathClasses.theory.naturals MathClasses.theory.rings MathClasses.implementations.peano_naturals. Require Export @@ -21,7 +21,7 @@ Proof. solve_proper. intros. now rewrite preserves_0. intros n E. rewrite preserves_plus, preserves_1. - apply nonneg_plus_compat. solve_propholds. easy. + apply nonneg_plus_compat. solve_propholds. done. Qed. Section nat_int_order. @@ -96,7 +96,7 @@ Lemma pos_ge_1 x : 0 < x ↔ 1 ≤ x. Proof. split; intros E. rewrite <-(plus_0_l 1). now apply lt_iff_plus_1_le. - apply lt_le_trans with 1; [solve_propholds | easy]. + apply lt_le_trans with 1; [solve_propholds | done]. Qed. Lemma le_iff_lt_plus_1 x y : x ≤ y ↔ x < y + 1. diff --git a/orders/naturals.v b/orders/naturals.v index be6ba7f..3f30a02 100644 --- a/orders/naturals.v +++ b/orders/naturals.v @@ -1,6 +1,6 @@ Require MathClasses.theory.naturals. -Require Import +Require Import MathClasses.misc.stdpp_tactics Coq.setoid_ring.Ring MathClasses.interfaces.abstract_algebra MathClasses.interfaces.naturals MathClasses.interfaces.orders MathClasses.orders.rings. Require Export MathClasses.orders.nat_int. @@ -16,7 +16,7 @@ Proof. split; intros E. destruct (decompose_le E) as [z [Ez1 Ez2]]. now exists z. destruct E as [z Ez]. - apply compose_le with z; [solve_propholds | easy]. + apply compose_le with z; [solve_propholds | done]. Qed. Lemma nat_not_neg x : ¬x < 0. diff --git a/orders/semirings.v b/orders/semirings.v index a1ce9ed..19b433d 100644 --- a/orders/semirings.v +++ b/orders/semirings.v @@ -1,4 +1,4 @@ -Require Import +Require Import MathClasses.misc.stdpp_tactics Coq.setoid_ring.Ring MathClasses.interfaces.abstract_algebra MathClasses.interfaces.orders MathClasses.theory.rings. Require Export MathClasses.orders.orders MathClasses.orders.maps. @@ -61,7 +61,7 @@ Section semiring_order. Proof. intros E. destruct (srorder_partial_minus x y E) as [z Ez]. - exists z. split; [| easy]. + exists z. split; [| done]. apply (order_reflecting (x+)). now rewrite plus_0_r, <-Ez. Qed. @@ -93,14 +93,14 @@ Section semiring_order. intros Ex₁ Ey₁ E1 E2. transitivity (y₁ * x₂). now apply (order_preserving_flip_nonneg (.*.) x₂). - apply (order_preserving_nonneg (.*.) y₁); [| easy]. + apply (order_preserving_nonneg (.*.) y₁); [| done]. now transitivity x₁. Qed. Lemma ge_1_mult_le_compat_r x y z : 1 ≤ z → 0 ≤ y → x ≤ y → x ≤ y * z. Proof. intros. - transitivity y; [easy |]. + transitivity y; [done |]. rewrite <-(mult_1_r y) at 1. now apply (order_preserving_nonneg (.*.) y). Qed. @@ -200,7 +200,7 @@ Section strict_semiring_order. Proof. intros E. destruct (strict_srorder_partial_minus x y E) as [z Ez]. - exists z. split; [| easy]. + exists z. split; [| done]. apply (strictly_order_reflecting (x+)). now rewrite <-Ez, rings.plus_0_r. Qed. @@ -223,14 +223,14 @@ Section strict_semiring_order. intros Ex₁ Ey₁ E1 E2. transitivity (y₁ * x₂). now apply (strictly_order_preserving_flip_pos (.*.) x₂). - apply (strictly_order_preserving_pos (.*.) y₁); [| easy ]. + apply (strictly_order_preserving_pos (.*.) y₁); [| done ]. now transitivity x₁. Qed. Lemma gt_1_mult_lt_compat_r x y z : 1 < z → 0 < y → x < y → x < y * z. Proof. intros. - transitivity y; [ easy |]. + transitivity y; [ done |]. rewrite <-(mult_1_r y) at 1. now apply (strictly_order_preserving_pos (.*.) y). Qed. @@ -320,10 +320,10 @@ Section pseudo_semiring_order. rewrite apart_iff_total_lt in Ex, Ey. destruct Ex as [Ex|Ex], Ey as [Ey|Ey]; try tauto. destruct (irreflexivity (<) 0). - transitivity (x * y); [| easy]. + transitivity (x * y); [| done]. now apply pos_mult_compat. destruct (irreflexivity (<) 0). - transitivity (x * y); [| easy]. + transitivity (x * y); [| done]. now apply neg_mult. Qed. @@ -339,10 +339,10 @@ Section pseudo_semiring_order. rewrite apart_iff_total_lt in Ex, Ey. destruct Ex as [Ex|Ex], Ey as [Ey|Ey]; try tauto. destruct (irreflexivity (<) 0). - transitivity (x * y); [easy |]. + transitivity (x * y); [done |]. now apply pos_neg_mult. destruct (irreflexivity (<) 0). - transitivity (x * y); [easy |]. + transitivity (x * y); [done |]. now apply neg_pos_mult. Qed. @@ -398,7 +398,7 @@ Section pseudo_semiring_order. Proof. intros. apply (strictly_order_reflecting (.* y)). now rewrite rings.mult_0_l. Qed. Lemma pos_mult_rev_r x y : 0 < x * y → 0 < x → 0 < y. - Proof. intros. apply pos_mult_rev_l with x. now rewrite commutativity. easy. Qed. + Proof. intros. apply pos_mult_rev_l with x. now rewrite commutativity. done. Qed. Context `{PropHolds (1 ≶ 0)}. @@ -509,7 +509,7 @@ Section full_pseudo_semiring_order. Proof. apply not_lt_le_flip. intros E. destruct (lt_antisym (x * x) 0). - split; [easy |]. + split; [done |]. apply square_pos. apply (strong_extensionality (x *.)). rewrite mult_0_r. @@ -520,7 +520,7 @@ Section full_pseudo_semiring_order. Proof. intros. apply (order_reflecting (.* y)). now rewrite rings.mult_0_l. Qed. Lemma nonneg_mult_rev_r x y : 0 ≤ x * y → 0 < x → 0 ≤ y. - Proof. intros. apply nonneg_mult_rev_l with x. now rewrite commutativity. easy. Qed. + Proof. intros. apply nonneg_mult_rev_l with x. now rewrite commutativity. done. Qed. Instance le_0_1 : PropHolds (0 ≤ 1). Proof. red. setoid_replace 1 with (1 * 1) by ring. now apply square_nonneg. Qed. @@ -556,14 +556,14 @@ Section full_pseudo_semiring_order. Proof. intros. apply ge_1_mult_le_compat_r; trivial. - transitivity 1. now apply le_0_1. easy. + transitivity 1. now apply le_0_1. done. Qed. Lemma gt_1_ge_1_mult_compat x y : 1 < x → 1 ≤ y → 1 < x * y. Proof. intros. apply lt_le_trans with x; trivial. - apply ge_1_mult_le_compat_r; try easy. + apply ge_1_mult_le_compat_r; try done. transitivity 1. now apply le_0_1. now apply lt_le. Qed. diff --git a/theory/abs.v b/theory/abs.v index 48e08cf..561d344 100644 --- a/theory/abs.v +++ b/theory/abs.v @@ -1,4 +1,4 @@ -Require Import +Require Import MathClasses.misc.stdpp_tactics Coq.setoid_ring.Ring MathClasses.interfaces.abstract_algebra MathClasses.interfaces.orders MathClasses.orders.rings. Section contents. @@ -31,7 +31,7 @@ Lemma abs_nonneg_plus (x y : R) : 0 ≤ x → 0 ≤ y → abs (x + y) = abs x + abs y. Proof. intros Ex Ey. - rewrite ?abs_nonneg; try easy. + rewrite ?abs_nonneg; try done. now apply nonneg_plus_compat. Qed. @@ -99,7 +99,7 @@ Section order_preserving. Lemma preserves_abs x : f (abs x) = abs (f x). Proof. destruct (total (≤) 0 x). - rewrite ?abs_nonneg; try easy. + rewrite ?abs_nonneg; try done. now apply semirings.preserves_nonneg. rewrite ?abs_nonpos; try easy. apply rings.preserves_negate. diff --git a/theory/cut_minus.v b/theory/cut_minus.v index 32e5233..2ab0664 100644 --- a/theory/cut_minus.v +++ b/theory/cut_minus.v @@ -1,6 +1,6 @@ Require MathClasses.orders.semirings. -Require Import +Require Import MathClasses.misc.stdpp_tactics Coq.setoid_ring.Ring MathClasses.interfaces.abstract_algebra MathClasses.interfaces.additional_operations MathClasses.interfaces.orders MathClasses.orders.minmax. @@ -19,9 +19,9 @@ Section cut_minus_properties. Proof. intros x₁ x₂ E y₁ y₂ F. destruct (total (≤) x₂ y₂). - rewrite cut_minus_0, cut_minus_0; try easy. now rewrite E, F. + rewrite cut_minus_0, cut_minus_0; try done. now rewrite E, F. apply (right_cancellation (+) y₂). - rewrite cut_minus_le by easy. + rewrite cut_minus_le by done. rewrite <-E, <-F. apply cut_minus_le. now rewrite E, F. Qed. @@ -65,7 +65,7 @@ Section cut_minus_properties. Lemma cut_minus_le_trans x y z : y ≤ x → z ≤ y → (x ∸ y) + (y ∸ z) = x ∸ z. Proof. intros. apply (right_cancellation (+) z). - rewrite <-associativity, !cut_minus_le; try easy. + rewrite <-associativity, !cut_minus_le; try done. now transitivity y. Qed. Hint Resolve cut_minus_le_trans. @@ -90,7 +90,7 @@ Section cut_minus_properties. ring. now apply (maps.order_preserving_nonneg (.*.) x). apply (right_cancellation (+) (x * z)). - rewrite <-distribute_l, !cut_minus_le; try easy. + rewrite <-distribute_l, !cut_minus_le; try done. now apply (maps.order_preserving_nonneg (.*.) x). Qed. @@ -106,7 +106,7 @@ Section cut_minus_properties. rewrite !cut_minus_0; intuition. apply (right_cancellation (+) (x + z)). transitivity ((y ∸ z + z) + x); try ring. - rewrite !cut_minus_le; try easy; try ring. + rewrite !cut_minus_le; try done; try ring. now apply (order_preserving (x +)). Qed. @@ -117,8 +117,8 @@ Section cut_minus_properties. Lemma cut_minus_plus_r x y z : 0 ≤ z → x ∸ (y + z) = (x ∸ y) ∸ z. Proof. intros E. case (total (≤) x y); intros Exy. - rewrite (cut_minus_0 x y) by easy. - rewrite cut_minus_0_l, cut_minus_0; try easy. + rewrite (cut_minus_0 x y) by done. + rewrite cut_minus_0_l, cut_minus_0; try done. now apply semirings.plus_le_compat_r. rewrite (cut_minus_plus_rev_r y (x ∸ y) z). now rewrite cut_minus_le, commutativity. @@ -130,28 +130,28 @@ Section cut_minus_properties. Lemma cut_minus_plus_toggle1 x y z : x ≤ y → z ≤ y → (y ∸ x) + (x ∸ z) = (y ∸ z) + (z ∸ x). Proof. intros. destruct (total (≤) x z). - rewrite (cut_minus_0 x z), cut_minus_le_trans by easy. ring. - rewrite (cut_minus_0 z x), cut_minus_le_trans by easy. ring. + rewrite (cut_minus_0 x z), cut_minus_le_trans by done. ring. + rewrite (cut_minus_0 z x), cut_minus_le_trans by done. ring. Qed. Lemma cut_minus_plus_toggle2 x y z : y ≤ x → y ≤ z → (x ∸ z) + (z ∸ y) = (z ∸ x) + (x ∸ y). Proof. intros. destruct (total (≤) x z). - rewrite (cut_minus_0 x z), cut_minus_le_trans by easy. ring. - rewrite (cut_minus_0 z x) by easy. ring_simplify. now auto. + rewrite (cut_minus_0 x z), cut_minus_le_trans by done. ring. + rewrite (cut_minus_0 z x) by done. ring_simplify. now auto. Qed. Lemma cut_minus_plus_toggle3 x₁ x₂ y₁ y₂ : x₁ ≤ y₁ → y₂ ≤ x₂ → (y₁ ∸ x₁) + ((x₁ + x₂) ∸ (y₁ + y₂)) = (x₂ ∸ y₂) + ((y₁ + y₂) ∸ (x₁ + x₂)). Proof. intros. destruct (total (≤) (x₁ + x₂) (y₁ + y₂)). - rewrite (cut_minus_0 (x₁ + x₂) (y₁ + y₂)) by easy. - rewrite cut_minus_plus_distr by easy. + rewrite (cut_minus_0 (x₁ + x₂) (y₁ + y₂)) by done. + rewrite cut_minus_plus_distr by done. setoid_replace (x₂ + (y₁ + y₂)) with (y₁ + (x₂ + y₂)) by ring. setoid_replace (y₂ + (x₁ + x₂)) with (x₁ + (x₂ + y₂)) by ring. rewrite <-cut_minus_plus_rev_r. ring. - rewrite (cut_minus_0 (y₁ + y₂) (x₁ + x₂)) by easy. - rewrite cut_minus_plus_distr by easy. + rewrite (cut_minus_0 (y₁ + y₂) (x₁ + x₂)) by done. + rewrite cut_minus_plus_distr by done. setoid_replace (y₁ + (x₁ + x₂)) with (x₂ + (x₁ + y₁)) by ring. setoid_replace (x₁ + (y₁ + y₂)) with (y₂ + (x₁ + y₁)) by ring. rewrite <-cut_minus_plus_rev_r. ring. @@ -160,7 +160,7 @@ Section cut_minus_properties. Lemma cut_minus_0_plus_toggle x : x + (0 ∸ x) = x ∸ 0. Proof. destruct (total (≤) 0 x). - rewrite (cut_minus_0 0 x), (cut_minus_nonneg_0_r x) by easy. ring. + rewrite (cut_minus_0 0 x), (cut_minus_nonneg_0_r x) by done. ring. rewrite (cut_minus_0 x 0), commutativity; auto. Qed. @@ -169,7 +169,7 @@ Section cut_minus_properties. intros. rewrite <-!cut_minus_0_plus_toggle. apply (right_cancellation (+) x). setoid_replace (y ∸ x + (x + (0 ∸ x)) + (0 ∸ y) + x) with ((y ∸ x + x) + (x + (0 ∸ x)) + (0 ∸ y)) by ring. - rewrite (cut_minus_le y x) by easy. ring. + rewrite (cut_minus_le y x) by done. ring. Qed. (* * Properties of min and minus *) @@ -230,30 +230,30 @@ Section cut_minus_default. Qed. End cut_minus_default. -Set Warnings "-unsupported-attributes". (* FIXME: remove when minimal Coq version is enough *) - -#[global] -Typeclasses Opaque default_cut_minus. - -Set Warnings "+unsupported-attributes". - -Section order_preserving. - Context `{FullPseudoSemiRingOrder A} `{!TrivialApart A} `{!CutMinusSpec A cmA} `{∀ x y : A, Decision (x = y)} - `{FullPseudoSemiRingOrder B} `{!TrivialApart B} `{!CutMinusSpec B cmB} `{∀ x y : B, Decision (x = y)} - {f : A → B} `{!OrderPreserving f} `{!SemiRing_Morphism f}. - - Local Existing Instance pseudo_srorder_semiring. - - Lemma preserves_cut_minus x y : f (x ∸ y) = f x ∸ f y. - Proof. - destruct (total (≤) x y) as [E|E]. - rewrite (cut_minus_0 x y E), (cut_minus_0 (f x) (f y)). - apply rings.preserves_0. - now apply (order_preserving _). - apply (left_cancellation (+) (f y)). rewrite 2!(commutativity (f y)). - rewrite <-rings.preserves_plus. - rewrite (cut_minus_le x y E), (cut_minus_le (f x) (f y)). - reflexivity. - now apply (order_preserving _). - Qed. -End order_preserving. +Set Warnings "-unsupported-attributes". (* FIXME: remove when minimal Coq version is enough *) + +#[global] +Typeclasses Opaque default_cut_minus. + +Set Warnings "+unsupported-attributes". + +Section order_preserving. + Context `{FullPseudoSemiRingOrder A} `{!TrivialApart A} `{!CutMinusSpec A cmA} `{∀ x y : A, Decision (x = y)} + `{FullPseudoSemiRingOrder B} `{!TrivialApart B} `{!CutMinusSpec B cmB} `{∀ x y : B, Decision (x = y)} + {f : A → B} `{!OrderPreserving f} `{!SemiRing_Morphism f}. + + Local Existing Instance pseudo_srorder_semiring. + + Lemma preserves_cut_minus x y : f (x ∸ y) = f x ∸ f y. + Proof. + destruct (total (≤) x y) as [E|E]. + rewrite (cut_minus_0 x y E), (cut_minus_0 (f x) (f y)). + apply rings.preserves_0. + now apply (order_preserving _). + apply (left_cancellation (+) (f y)). rewrite 2!(commutativity (f y)). + rewrite <-rings.preserves_plus. + rewrite (cut_minus_le x y E), (cut_minus_le (f x) (f y)). + reflexivity. + now apply (order_preserving _). + Qed. +End order_preserving. diff --git a/theory/dec_fields.v b/theory/dec_fields.v index 8f3cfa1..c4cc2fb 100644 --- a/theory/dec_fields.v +++ b/theory/dec_fields.v @@ -1,4 +1,4 @@ -Require Import +Require Import MathClasses.misc.stdpp_tactics Coq.setoid_ring.Field Coq.setoid_ring.Ring MathClasses.interfaces.abstract_algebra MathClasses.interfaces.vectorspace MathClasses.theory.fields MathClasses.theory.strong_setoids. @@ -79,7 +79,7 @@ Proof. now apply dec_recip_ne_0. rewrite dec_recip_inverse by assumption. rewrite <-E, dec_recip_inverse. - easy. + done. apply dec_recip_ne_0_iff. rewrite E. now apply dec_recip_ne_0. Qed. @@ -248,7 +248,7 @@ Section morphisms. rewrite <-preserves_mult, 2!dec_recip_inverse. now apply preserves_1. now apply injective_ne_0. - easy. + done. Qed. Lemma dec_recip_to_recip `{Field F2} `{!StrongSemiRing_Morphism (f : F → F2)} x Pfx : diff --git a/theory/groups.v b/theory/groups.v index 05f9bb2..139e127 100644 --- a/theory/groups.v +++ b/theory/groups.v @@ -1,6 +1,6 @@ Require MathClasses.theory.setoids. -Require Import +Require Import MathClasses.misc.stdpp_tactics Coq.Classes.Morphisms MathClasses.interfaces.abstract_algebra. Section semigroup_props. @@ -22,7 +22,7 @@ Ltac group_simplify := (try bottomup (hints group_simplify)); (try bottomup (choice (hints group_cancellation) ( <- associativity ))). -Ltac group := group_simplify; easy. +Ltac group := group_simplify; done. Set Warnings "-unsupported-attributes". (* FIXME: remove when minimal Coq version is enough *) diff --git a/theory/int_abs.v b/theory/int_abs.v index ea6c595..9344af9 100644 --- a/theory/int_abs.v +++ b/theory/int_abs.v @@ -1,4 +1,4 @@ -Require Import +Require Import MathClasses.misc.stdpp_tactics Coq.setoid_ring.Ring MathClasses.interfaces.naturals MathClasses.interfaces.abstract_algebra MathClasses.interfaces.orders MathClasses.orders.nat_int MathClasses.theory.integers MathClasses.theory.rings MathClasses.orders.rings. @@ -120,7 +120,7 @@ Proof. apply (injective f). rewrite preserves_mult. destruct (int_abs_spec x) as [[? Ex]|[? Ex]], (int_abs_spec y) as [[? Ey]|[? Ey]]; rewrite Ex, Ey. - rewrite int_abs_nonneg. easy. now apply nonneg_mult_compat. + rewrite int_abs_nonneg. done. now apply nonneg_mult_compat. rewrite int_abs_nonpos. ring. now apply nonneg_nonpos_mult. rewrite int_abs_nonpos. ring. now apply nonpos_nonneg_mult. rewrite int_abs_nonneg. ring. now apply nonpos_mult. diff --git a/theory/int_pow.v b/theory/int_pow.v index 20bc70d..bbc9039 100644 --- a/theory/int_pow.v +++ b/theory/int_pow.v @@ -1,6 +1,6 @@ Require MathClasses.theory.naturals MathClasses.orders.semirings MathClasses.orders.integers MathClasses.orders.dec_fields. -Require Import +Require Import MathClasses.misc.stdpp_tactics Coq.setoid_ring.Ring Coq.setoid_ring.Field MathClasses.interfaces.abstract_algebra MathClasses.interfaces.naturals MathClasses.interfaces.integers MathClasses.interfaces.additional_operations MathClasses.interfaces.orders @@ -132,7 +132,7 @@ Proof. solve_proper. now apply int_pow_0. intros n. rewrite int_pow_S, left_identity. - easy. + done. now apply (rings.is_ne_0 1). Qed. @@ -173,7 +173,7 @@ Proof. now rewrite left_absorb. destruct (decide (m = 0)) as [Em|Em]. now rewrite Em, right_absorb, 2!int_pow_0. - rewrite 3!int_pow_base_0; try easy. + rewrite 3!int_pow_base_0; try done. intros E. now destruct (zero_product n m E). revert m. apply biinduction. solve_proper. @@ -188,7 +188,7 @@ Proof. apply (rings.left_cancellation_ne_0 (.*.) (x ^ n)). now apply int_pow_ne_0. now rewrite E. - easy. + done. now apply int_pow_ne_0. Qed. @@ -263,7 +263,7 @@ Instance int_pow_exp_le: ∀ x : A, PropHolds (1 ≤ x) → OrderPreserving (x^). Proof. repeat (split; try apply _). - assert (0 < x) by (apply orders.lt_le_trans with 1; [solve_propholds | easy]). + assert (0 < x) by (apply orders.lt_le_trans with 1; [solve_propholds | done]). intros n m E. destruct (semirings.decompose_le E) as [z [Ea Eb]]. rewrite Eb. @@ -277,7 +277,7 @@ Instance int_pow_exp_lt: ∀ x : A, PropHolds (1 < x) → StrictlyOrderPreserving (x^). Proof. repeat (split; try apply _). - assert (0 < x) by (apply orders.le_lt_trans with 1; [solve_propholds | easy]). + assert (0 < x) by (apply orders.le_lt_trans with 1; [solve_propholds | done]). intros n m E. apply nat_int.lt_iff_plus_1_le in E. destruct (semirings.decompose_le E) as [z [Ea Eb]]. @@ -363,7 +363,7 @@ Section exp_preservation. rewrite Ex. destruct (decide (n = 0)) as [En|En]. now rewrite En, rings.preserves_0, 2!int_pow_0. - rewrite 2!int_pow_base_0; try easy. + rewrite 2!int_pow_base_0; try done. now apply rings.injective_ne_0. revert n. apply biinduction. solve_proper. diff --git a/theory/int_to_nat.v b/theory/int_to_nat.v index e4251f9..318b506 100644 --- a/theory/int_to_nat.v +++ b/theory/int_to_nat.v @@ -1,4 +1,4 @@ -Require Import +Require Import MathClasses.misc.stdpp_tactics Coq.setoid_ring.Ring MathClasses.interfaces.naturals MathClasses.interfaces.abstract_algebra MathClasses.interfaces.orders MathClasses.orders.nat_int MathClasses.theory.integers MathClasses.theory.rings MathClasses.orders.rings. @@ -100,9 +100,9 @@ Lemma int_to_nat_mult_nonneg_l x y : 0 ≤ x → int_to_nat Z N (x * y) = int_to_nat Z N x * int_to_nat Z N y. Proof. intros E. apply (injective f). rewrite preserves_mult. - rewrite (int_to_nat_of_nonneg x) by easy. + rewrite (int_to_nat_of_nonneg x) by done. destruct (int_to_nat_spec y) as [[? Ey]|[? Ey]]; rewrite Ey, ?preserves_0. - rewrite int_to_nat_of_nonneg. easy. now apply nonneg_mult_compat. + rewrite int_to_nat_of_nonneg. done. now apply nonneg_mult_compat. rewrite int_to_nat_of_nonpos, preserves_0. ring. now apply nonneg_nonpos_mult. Qed. @@ -160,13 +160,13 @@ Proof. repeat (split; try apply _). intros x y E. destruct (total (≤) 0 x). now apply int_to_nat_le_cancel_r, int_to_nat_le_l. - rewrite int_to_nat_of_nonpos. solve_propholds. easy. + rewrite int_to_nat_of_nonpos. solve_propholds. done. Qed. Lemma int_to_nat_le_back x y : 0 ≤ y → int_to_nat Z N x ≤ int_to_nat Z N y → x ≤ y. Proof. - intros. rewrite <-(int_to_nat_of_nonneg y) by easy. + intros. rewrite <-(int_to_nat_of_nonneg y) by done. transitivity (f (int_to_nat Z N x)). now apply int_to_nat_le_r. now apply (order_preserving f). @@ -197,13 +197,13 @@ Lemma int_to_nat_lt x y : Proof. intros Ey Exy. destruct (total (≤) 0 x). now apply int_to_nat_lt_cancel_r, int_to_nat_lt_l. - rewrite int_to_nat_of_nonpos by easy. now apply int_to_nat_pos. + rewrite int_to_nat_of_nonpos by done. now apply int_to_nat_pos. Qed. Lemma int_to_nat_lt_back x y : 0 ≤ y → int_to_nat Z N x < int_to_nat Z N y → x < y. Proof. - intros. rewrite <-(int_to_nat_of_nonneg y) by easy. + intros. rewrite <-(int_to_nat_of_nonneg y) by done. apply le_lt_trans with (f (int_to_nat Z N x)). now apply int_to_nat_le_r. now apply (strictly_order_preserving f). diff --git a/theory/jections.v b/theory/jections.v index 5ef7d4e..458a460 100644 --- a/theory/jections.v +++ b/theory/jections.v @@ -1,4 +1,4 @@ -Require Import +Require Import MathClasses.misc.stdpp_tactics MathClasses.theory.setoids MathClasses.interfaces.abstract_algebra. Local Existing Instance injective_mor. @@ -61,7 +61,7 @@ Global Existing Instance id_morphism. #[global] Instance id_injective `{Setoid A} : Injective (@id A). -Proof. split; try apply _. easy. Qed. +Proof. split; try apply _. done. Qed. #[global] Instance id_surjective `{Setoid A} : Surjective (@id A). Proof. split; try apply _. now repeat intro. Qed. diff --git a/theory/monads.v b/theory/monads.v index f8c01fa..d04df08 100644 --- a/theory/monads.v +++ b/theory/monads.v @@ -1,4 +1,4 @@ -Require Import +Require Import MathClasses.misc.stdpp_tactics MathClasses.interfaces.abstract_algebra MathClasses.interfaces.monads MathClasses.theory.functors. #[global] @@ -134,7 +134,7 @@ Section monad. intros A ?? B ?? f g E1 m n E2. apply mon_bind_proper. intros x y E3. now apply mon_ret_proper, E1. - easy. + done. intros A ? B ? f ??? E. pose proof (setoidmor_a f). pose proof (setoidmor_b f). now rewrite E. intros A ?? ?? E. unfold join, default_mon_join. diff --git a/theory/nat_pow.v b/theory/nat_pow.v index f661558..45d175f 100644 --- a/theory/nat_pow.v +++ b/theory/nat_pow.v @@ -1,6 +1,6 @@ Require MathClasses.theory.naturals. -Require Import +Require Import MathClasses.misc.stdpp_tactics Coq.setoid_ring.Ring MathClasses.interfaces.abstract_algebra MathClasses.interfaces.naturals MathClasses.interfaces.orders MathClasses.interfaces.additional_operations. (* * Properties of Nat Pow *) @@ -195,12 +195,12 @@ Section nat_pow_default. Instance: Proper ((=) ==> (=) ==> (=)) nat_pow_peano. Proof. intros ? ? E a ? []. - induction a; try easy. + induction a; try done. simpl. now rewrite IHa, E. Qed. Global Instance: NatPowSpec A nat nat_pow_peano. - Proof. split; try apply _; easy. Qed. + Proof. split; try apply _; done. Qed. Context `{Naturals B}. @@ -214,7 +214,7 @@ Section nat_pow_default. Qed. End nat_pow_default. -Set Warnings "-unsupported-attributes". (* FIXME: remove when minimal Coq version is enough *) - -#[global] -Typeclasses Opaque default_nat_pow. +Set Warnings "-unsupported-attributes". (* FIXME: remove when minimal Coq version is enough *) + +#[global] +Typeclasses Opaque default_nat_pow. diff --git a/theory/naturals.v b/theory/naturals.v index 510a10f..3a73327 100644 --- a/theory/naturals.v +++ b/theory/naturals.v @@ -1,4 +1,4 @@ -Require Import +Require Import MathClasses.misc.stdpp_tactics Coq.setoid_ring.Ring MathClasses.interfaces.abstract_algebra MathClasses.implementations.peano_naturals MathClasses.theory.rings Coq.Arith.PeanoNat MathClasses.categories.varieties MathClasses.theory.ua_transference. @@ -139,7 +139,7 @@ Section borrowed_from_nat. Proof. intros z E x y. rapply (from_nat_stmt ((z' === 0 -=> Ext _ False) -=> z' * x' === z' * y' -=> x' === y') (three_vars x y z)). - intro. simpl. intros. now apply (left_cancellation_ne_0 (.*.) (v () 2)). easy. + intro. simpl. intros. now apply (left_cancellation_ne_0 (.*.) (v () 2)). done. Qed. Global Instance: ∀ z : N, PropHolds (z ≠ 0) → RightCancellation (.*.) z. diff --git a/theory/streams.v b/theory/streams.v index f5fc3d3..25e61c8 100644 --- a/theory/streams.v +++ b/theory/streams.v @@ -1,7 +1,7 @@ (* In the standard library equality on streams is defined as pointwise Leibniz equality. Here we prove similar results, but we use setoid equality instead. *) Require Export MathClasses.theory.CoqStreams. -Require Import MathClasses.implementations.peano_naturals MathClasses.interfaces.abstract_algebra. +Require Import MathClasses.misc.stdpp_tactics MathClasses.implementations.peano_naturals MathClasses.interfaces.abstract_algebra. Section streams. Context `{Setoid A}. @@ -31,7 +31,7 @@ Proof. intros ? ? E. constructor. simpl. now rewrite E. - easy. + done. Qed. Global Instance: Proper ((=) ==> (=)) (@hd A). @@ -49,7 +49,7 @@ Proof. unfold equiv, peano_naturals.nat_equiv in E1. rewrite E1. clear E1 n. induction m. - easy. + done. simpl. rewrite <-2!tl_nth_tl. now rewrite IHm. Qed. @@ -104,7 +104,7 @@ Lemma EventuallyForAll_Str_nth_tl P n s : Proof. revert s. induction n. - easy. + done. intros. now apply IHn, EventuallyForAll_tl. Qed. diff --git a/theory/strong_setoids.v b/theory/strong_setoids.v index c79720f..29423dc 100644 --- a/theory/strong_setoids.v +++ b/theory/strong_setoids.v @@ -1,4 +1,4 @@ -Require Import +Require Import MathClasses.misc.stdpp_tactics MathClasses.interfaces.abstract_algebra MathClasses.theory.jections. Section contents. @@ -151,70 +151,70 @@ End more_morphisms. #[global] Instance default_apart `{Equiv A} : Apart A | 20 := (≠). -Set Warnings "-unsupported-attributes". (* FIXME: remove when minimal Coq version is enough *) - -#[global] -Typeclasses Opaque default_apart. - -Set Warnings "+unsupported-attributes". - -#[global] -Instance default_apart_trivial `{Equiv A} : TrivialApart A (Aap:=default_apart). -Proof. red. reflexivity. Qed. - -(* In case we have a decidable setoid, we can construct a strong setoid. Again - we do not make this an instance as it will cause loops *) -Section dec_setoid. - Context `{Setoid A} `{Apart A} `{!TrivialApart A} `{∀ x y, Decision (x = y)}. - - (* Not Global in order to avoid loops *) - Instance ne_apart x y : PropHolds (x ≠ y) → PropHolds (x ≶ y). - Proof. rewrite trivial_apart. easy. Qed. - - Instance dec_strong_setoid: StrongSetoid A. - Proof. - split; try apply _. - firstorder. - intros x y. rewrite !trivial_apart. firstorder. - intros x y E1 z. rewrite !trivial_apart. - destruct (decide (x = z)) as [E2|E2]; [|tauto]. - right. intros E3. rewrite trivial_apart in E1. apply E1. now rewrite E2. - intros x y. rewrite trivial_apart. split. - intros E. now apply stable. - firstorder. - Qed. -End dec_setoid. - -(* And a similar result for morphisms *) -Section dec_setoid_morphisms. - Context `{StrongSetoid A} `{!TrivialApart A} `{StrongSetoid B}. - - Instance dec_strong_morphism (f : A → B) `{!Setoid_Morphism f} : - StrongSetoid_Morphism f. - Proof. - split; try apply _. - intros x y E. apply trivial_apart, (setoids.morphism_ne f). now apply apart_ne. - Qed. - - Context `{!TrivialApart B}. - - Instance dec_strong_injective (f : A → B) `{!Injective f} : - StrongInjective f. - Proof. - pose proof (injective_mor f). - split; try apply _. - intros x y. rewrite !trivial_apart. now apply (injective_ne f). - Qed. - - Context `{StrongSetoid C}. - - Instance dec_strong_binary_morphism (f : A → B → C) `{!Proper ((=) ==> (=) ==> (=)) f} : - StrongSetoid_BinaryMorphism f. - Proof. - split; try apply _. - intros x₁ y₁ x₂ y₂ E1. - case (cotransitive E1 (f x₂ y₁)); rewrite !trivial_apart; intros E2. - left. intros E3. destruct (apart_ne _ _ E2). now rewrite E3. - right. intros E3. destruct (apart_ne _ _ E2). now rewrite E3. - Qed. -End dec_setoid_morphisms. +Set Warnings "-unsupported-attributes". (* FIXME: remove when minimal Coq version is enough *) + +#[global] +Typeclasses Opaque default_apart. + +Set Warnings "+unsupported-attributes". + +#[global] +Instance default_apart_trivial `{Equiv A} : TrivialApart A (Aap:=default_apart). +Proof. red. reflexivity. Qed. + +(* In case we have a decidable setoid, we can construct a strong setoid. Again + we do not make this an instance as it will cause loops *) +Section dec_setoid. + Context `{Setoid A} `{Apart A} `{!TrivialApart A} `{∀ x y, Decision (x = y)}. + + (* Not Global in order to avoid loops *) + Instance ne_apart x y : PropHolds (x ≠ y) → PropHolds (x ≶ y). + Proof. rewrite trivial_apart. done. Qed. + + Instance dec_strong_setoid: StrongSetoid A. + Proof. + split; try apply _. + firstorder. + intros x y. rewrite !trivial_apart. firstorder. + intros x y E1 z. rewrite !trivial_apart. + destruct (decide (x = z)) as [E2|E2]; [|tauto]. + right. intros E3. rewrite trivial_apart in E1. apply E1. now rewrite E2. + intros x y. rewrite trivial_apart. split. + intros E. now apply stable. + firstorder. + Qed. +End dec_setoid. + +(* And a similar result for morphisms *) +Section dec_setoid_morphisms. + Context `{StrongSetoid A} `{!TrivialApart A} `{StrongSetoid B}. + + Instance dec_strong_morphism (f : A → B) `{!Setoid_Morphism f} : + StrongSetoid_Morphism f. + Proof. + split; try apply _. + intros x y E. apply trivial_apart, (setoids.morphism_ne f). now apply apart_ne. + Qed. + + Context `{!TrivialApart B}. + + Instance dec_strong_injective (f : A → B) `{!Injective f} : + StrongInjective f. + Proof. + pose proof (injective_mor f). + split; try apply _. + intros x y. rewrite !trivial_apart. now apply (injective_ne f). + Qed. + + Context `{StrongSetoid C}. + + Instance dec_strong_binary_morphism (f : A → B → C) `{!Proper ((=) ==> (=) ==> (=)) f} : + StrongSetoid_BinaryMorphism f. + Proof. + split; try apply _. + intros x₁ y₁ x₂ y₂ E1. + case (cotransitive E1 (f x₂ y₁)); rewrite !trivial_apart; intros E2. + left. intros E3. destruct (apart_ne _ _ E2). now rewrite E3. + right. intros E3. destruct (apart_ne _ _ E2). now rewrite E3. + Qed. +End dec_setoid_morphisms. diff --git a/varieties/monoids.v b/varieties/monoids.v index a6054bb..545883a 100644 --- a/varieties/monoids.v +++ b/varieties/monoids.v @@ -1,5 +1,5 @@ (* To be imported qualified. *) -Require Import +Require Import MathClasses.misc.stdpp_tactics MathClasses.interfaces.abstract_algebra MathClasses.interfaces.universal_algebra MathClasses.theory.ua_homomorphisms MathClasses.misc.workaround_tactics MathClasses.categories.categories. Require @@ -122,7 +122,7 @@ Qed. #[global] Instance id_monoid_morphism `{Monoid A}: Monoid_Morphism (@id A). -Proof. repeat (split; try apply _); easy. Qed. +Proof. repeat (split; try apply _); done. Qed. (* Finally, we use these encoding/decoding functions to specialize some universal results: *) Section specialized. diff --git a/varieties/semigroups.v b/varieties/semigroups.v index da444b7..b03b236 100644 --- a/varieties/semigroups.v +++ b/varieties/semigroups.v @@ -1,7 +1,7 @@ (* To be imported qualified. *) Require MathClasses.categories.varieties MathClasses.categories.product MathClasses.theory.forget_algebra MathClasses.theory.forget_variety. -Require Import +Require Import MathClasses.misc.stdpp_tactics MathClasses.interfaces.abstract_algebra MathClasses.interfaces.universal_algebra MathClasses.theory.ua_homomorphisms MathClasses.misc.workaround_tactics categories.categories. Inductive op := mult. @@ -107,7 +107,7 @@ Qed. #[global] Instance id_sg_morphism `{SemiGroup A}: SemiGroup_Morphism (@id A). -Proof. repeat (split; try apply _); easy. Qed. +Proof. repeat (split; try apply _); done. Qed. (* Finally, we use these encoding/decoding functions to specialize some universal results: *) Section specialized.