Skip to content

Commit

Permalink
Merge pull request #50 from tymmym/master
Browse files Browse the repository at this point in the history
Add Module instance for polynomials
  • Loading branch information
spitters authored Oct 16, 2023
2 parents 83822de + d0c6efc commit 6ad1db9
Showing 1 changed file with 33 additions and 29 deletions.
62 changes: 33 additions & 29 deletions implementations/polynomials.v
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
Require Import
Coq.Lists.List
MathClasses.interfaces.abstract_algebra
MathClasses.interfaces.vectorspace
MathClasses.theory.rings
Ring.
Import ListNotations.
Expand Down Expand Up @@ -229,13 +230,13 @@ Section contents.
Instance poly_plus_abgroup: AbGroup poly.
Proof. repeat (split; try apply _). Qed.

Fixpoint poly_mult_cr (q: poly) (c: R): poly :=
Global Instance: ScalarMult R poly := fix F c q :=
match q with
| [] => 0
| d :: q1 => c*d :: poly_mult_cr q1 c
| d :: q1 => c*d :: F c q1
end.

Lemma poly_mult_cr_0_l q c: poly_eq_zero q → poly_eq_zero (poly_mult_cr q c).
Lemma poly_scalar_mult_0_r q c: poly_eq_zero q → poly_eq_zero (c · q).
Proof.
induction q as [|x q IH].
{ easy. }
Expand All @@ -245,45 +246,44 @@ Section contents.
ring.
Qed.

Instance poly_mult_cr_proper: Proper ((=) ==> (=) ==> (=)) poly_mult_cr.
Instance poly_scalar_mult_proper: Proper ((=) ==> (=) ==> (=)) (·).
Proof.
intros p p' eqp c c' eqc.
intros c c' eqc p p' eqp.
revert p p' eqp; refine (poly_eq_ind _ _ _).
{ now intros; apply poly_eq_zero_trans; apply poly_mult_cr_0_l. }
{ now intros; apply poly_eq_zero_trans; apply poly_scalar_mult_0_r. }
intros ???? eqx eqp IH.
split; auto; cbn.
ring [eqx eqc].
Qed.

Lemma poly_mult_cr_1_l x: poly_mult_cr 1 x = [x].
Lemma poly_scalar_mult_1_r x: x · 1 = [x].
Proof. cbn; split; [ring|easy]. Qed.
Instance poly_mult_cr_1_r: RightIdentity poly_mult_cr 1.
Instance poly_scalar_mult_1_l: LeftIdentity (·) 1.
Proof.
red; induction x as [|x p IH]; [easy|cbn].
red; induction y as [|y p IH]; [easy|cbn].
split; auto; ring.
Qed.

Instance poly_mult_cr_dist_l: LeftHeteroDistribute poly_mult_cr (+) (+).
Instance poly_scalar_mult_dist_l: LeftHeteroDistribute (·) (+) (+).
Proof.
intros x a b.
induction x as [|x p IH]; [easy|cbn].
intros a p.
induction p as [|x p IH]; intros [|y q]; [easy..|cbn].
split; auto; ring.
Qed.
Instance poly_mult_cr_dist_r: RightHeteroDistribute poly_mult_cr (+) (+).
Instance poly_scalar_mult_dist_r: RightHeteroDistribute (·) (+) (+).
Proof.
intros p q a.
revert q.
induction p as [|x p IH]; intros [|y q]; [easy..|cbn].
intros a b x.
induction x as [|x p IH]; [easy|cbn].
split; auto; ring.
Qed.
Instance poly_mult_cr_assoc: HeteroAssociative poly_mult_cr (.*.) poly_mult_cr poly_mult_cr.
Instance poly_scalar_mult_assoc: HeteroAssociative (·) (·) (·) (.*.).
Proof.
intros x a b.
intros a b x.
induction x as [|p x IH]; [easy|cbn].
split; auto; ring.
Qed.

Lemma poly_mult_cr_0_r q c: c = 0 → poly_eq_zero (poly_mult_cr q c).
Lemma poly_scalar_mult_0_l q c: c = 0 → poly_eq_zero (c · q).
Proof.
intros ->.
induction q as [|x q IH]; [easy|cbn].
Expand All @@ -294,14 +294,14 @@ Section contents.
Global Instance: Mult poly := fix F p q :=
match p with
| [] => 0
| c :: p1 => poly_mult_cr q c + (0 :: F p1 q)
| c :: p1 => c · q + (0 :: F p1 q)
end.

Lemma poly_mult_0_l p q: poly_eq_zero p → poly_eq_zero (p * q).
Proof.
induction 1 using poly_eq_zero_ind; [easy|cbn].
apply poly_eq_zero_plus.
- now apply poly_mult_cr_0_r.
- now apply poly_scalar_mult_0_l.
- rewrite poly_eq_zero_cons; auto.
Qed.

Expand All @@ -310,7 +310,7 @@ Section contents.
induction p as [|x p IH]; [easy|cbn].
intro eq0.
apply poly_eq_zero_plus.
- now apply poly_mult_cr_0_l.
- now apply poly_scalar_mult_0_r.
- rewrite poly_eq_zero_cons; auto.
Qed.

Expand All @@ -331,18 +331,18 @@ Section contents.
Proof.
intros p q r.
induction p as [|x p IH]; [easy|cbn].
rewrite (distribute_r q r x).
rewrite (distribute_l x q r ).
rewrite <- !associativity; apply poly_plus_proper; [easy|].
rewrite associativity, (commutativity (0::p*q)), <- associativity.
apply poly_plus_proper; [easy|].
cbn; split; [ring|easy].
Qed.

Lemma poly_mult_cons_r p q x: p * (x::q) = poly_mult_cr p x + (0 :: p * q).
Lemma poly_mult_cons_r p q x: p * (x::q) = x · p + (0 :: p * q).
Proof.
induction p as [|y p IH]; cbn; auto.
split; auto.
rewrite IH, !associativity, (commutativity (poly_mult_cr _ _)).
rewrite IH, !associativity, (commutativity (y · q)).
split; try easy.
ring.
Qed.
Expand Down Expand Up @@ -373,7 +373,7 @@ Section contents.
Instance poly_mult_1_l: LeftIdentity (.*.) 1.
Proof.
intro; cbn.
rewrite poly_mult_cr_1_r, poly_eq_zero_plus_r; auto.
rewrite poly_scalar_mult_1_l, poly_eq_zero_plus_r; auto.
now split.
Qed.

Expand All @@ -391,18 +391,22 @@ Section contents.
apply poly_plus_proper; cbn -[poly_eq].
{ clear IH.
induction q as [|y q IH]...
rewrite distribute_r, <- associativity, (commutativity x y).
rewrite distribute_l, <- associativity.
apply poly_plus_proper...
split; auto.
ring. }
assert (poly_mult_cr r 0 = 0) as ->.
{ now rewrite poly_eq_p_zero; apply poly_mult_cr_0_r. }
assert (0 · r = 0) as ->.
{ now rewrite poly_eq_p_zero; apply poly_scalar_mult_0_l. }
cbn; split; eauto.
now rewrite IH.
Qed.

Global Instance poly_ring: Ring poly.
Proof. repeat (split; try apply _). Qed.

Global Instance poly_module : @Module R poly Ae Aplus Amult Azero Aone Anegate
poly_eq (+) 0 (-) (·).
Proof. split; apply _. Qed.
End contents.

(*
Expand Down

0 comments on commit 6ad1db9

Please sign in to comment.