-
Notifications
You must be signed in to change notification settings - Fork 6
/
meta.yml
185 lines (147 loc) · 5.86 KB
/
meta.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
fullname: Lemma Overloading
shortname: lemma-overloading
organization: coq-community
community: true
action: true
coqdoc: true
doi: 10.1017/S0956796813000051
synopsis: >-
Libraries demonstrating design patterns for programming and proving
with canonical structures in Coq
description: |-
This project contains Hoare Type Theory libraries which
demonstrate a series of design patterns for programming
with canonical structures that enable one to carefully
and predictably coax Coq's type inference engine into triggering
the execution of user-supplied algorithms during unification, and
illustrates these patterns through several realistic examples drawn
from Hoare Type Theory. The project also contains typeclass-based
re-implementations for comparison.
publications:
- pub_url: https://software.imdea.org/~aleks/papers/lessadhoc/journal.pdf
pub_title: How to make ad hoc proof automation less ad hoc
pub_doi: 10.1017/S0956796813000051
- pub_url: https://software.imdea.org/~aleks/papers/reflect/reflect.pdf
pub_title: Structuring the verification of heap-manipulating programs
pub_doi: 10.1145/1706299.1706331
authors:
- name: Georges Gonthier
initial: true
- name: Beta Ziliani
initial: true
- name: Aleksandar Nanevski
initial: true
- name: Derek Dreyer
initial: true
maintainers:
- name: Anton Trunov
nickname: anton-trunov
opam-file-maintainer: palmskog@gmail.com
opam-file-version: dev
license:
fullname: GNU General Public License v3.0 or later
identifier: GPL-3.0-or-later
file: LICENSE.md
supported_coq_versions:
text: 8.16 or later (use releases for other Coq versions)
opam: '{>= "8.16"}'
tested_coq_opam_versions:
- version: '2.0.0-coq-8.16'
repo: 'mathcomp/mathcomp'
- version: '2.0.0-coq-8.17'
repo: 'mathcomp/mathcomp'
- version: '2.0.0-coq-8.18'
repo: 'mathcomp/mathcomp'
- version: '2.1.0-coq-8.16'
repo: 'mathcomp/mathcomp'
- version: '2.1.0-coq-8.17'
repo: 'mathcomp/mathcomp'
- version: '2.1.0-coq-8.18'
repo: 'mathcomp/mathcomp'
- version: '2.2.0-coq-8.16'
repo: 'mathcomp/mathcomp'
- version: '2.2.0-coq-8.17'
repo: 'mathcomp/mathcomp'
- version: '2.2.0-coq-8.18'
repo: 'mathcomp/mathcomp'
- version: '2.2.0-coq-8.19'
repo: 'mathcomp/mathcomp'
- version: '2.2.0-coq-8.20'
repo: 'mathcomp/mathcomp'
- version: '2.2.0-coq-dev'
repo: 'mathcomp/mathcomp'
- version: 'coq-8.18'
repo: 'mathcomp/mathcomp-dev'
- version: 'coq-8.19'
repo: 'mathcomp/mathcomp-dev'
- version: 'coq-8.20'
repo: 'mathcomp/mathcomp-dev'
- version: 'coq-dev'
repo: 'mathcomp/mathcomp-dev'
dependencies:
- opam:
name: coq-hierarchy-builder
version: '{>= "1.5.0"}'
description: |-
[Hierarchy Builder](https://github.com/math-comp/hierarchy-builder) 1.5.0 or later
- opam:
name: coq-mathcomp-ssreflect
version: '{>= "2.0"}'
nix: ssreflect
description: |-
[MathComp](https://math-comp.github.io) 2.0.0 or later (`ssreflect` suffices)
namespace: LemmaOverloading
keywords:
- name: canonical structures
- name: proof automation
- name: hoare type theory
- name: lemma overloading
categories:
- name: Computer Science/Data Types and Data Structures
documentation: |-
## Files described in the paper
The Coq source files mentioned in the paper [How to make ad hoc proof automation less ad hoc][lessadhoc],
Journal of Functional Programming 23(4), pp. 357-401, are described below. See also the
[coqdoc presentation][coqdoc] of the files from the latest release.
### `indom.v`
This file contains the indomR lemma from Section 3 "A simple overloaded lemma"
### `terms.v`, `xfind.v`, `cancel.v`, `cancelD.v`, `cancel2.v`
These files prove the `cancelR` lemma from Section 4 "Reflection: Turning
semantics into syntax". The first one contains the abstract syntax for heaps
along with the lemma `cancel_sound`. `xfind.v` has the xfind structure
to find an element in a list, return its index, and extend the list if the
element is not found. The file `cancel.v` has the main overloaded lemma `cancelR`.
Finally, `cancelD.v` contains the `simplify` lemma from section 4.3 and `cancel2.v`
contains an alternative version of the cancellation function without using
reflection.
### `stlogR.v`
File containing a whole bunch of overloaded lemmas to automate the verification
of imperative programs using Hoare Type Theory. The main technicalities in this
file are covered in Section 5 "Solving for functional instances".
### `noalias.v`
File containing all the automated lemmas described in Section 6 "Flexible
composition and application of overloaded lemmas".
## Bonus track
The files below didn't make it to the paper but deserve attention.
### `auto.v`
This file contains an adapted example from VeriML (Stampoulist and Shao),
to automatically prove propositions in a logic with binders.
### `llistR.v`
Verification of a linked list datatype using the "step" overloaded lemma described in Section 5.2.
### `noaliasBT.v`
There are several ways to attack a problem.
Some of them lead to interesting but yet not entirely satisfactory results.
Here are two versions of the `noalias` overloaded lemma with a different look.
### `indomCTC.v`, `xfindCTC.v`, `cancelCTC.v`, `noaliasCTC.v`, `stlogCTC.v`
These files contains the same automated lemmas as in the files `indom`, `cancel`,
`noalias` and `stlogR`, but done with Coq Type Classes.
## Other files
The files not mentioned above are part of the HTT library,
introduced in the paper [Structuring the Verification of Heap-Manipulating Programs][reflect],
Proceedings of the Symposium on Principles of Programming Languages (POPL) 2010,
pp. 261-274.
[lessadhoc]: https://software.imdea.org/~aleks/papers/lessadhoc/journal.pdf
[reflect]: https://software.imdea.org/~aleks/papers/reflect/reflect.pdf
[coqdoc]: https://coq-community.github.io/lemma-overloading/docs/latest/coqdoc/toc.html
---