-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdraw.py
317 lines (257 loc) · 11.7 KB
/
draw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: draw.py
# Author: Qian Ge <geqian1001@gmail.com>
import numpy as np
import tensorflow as tf
import src.utils.viz as viz
import src.models.layers as L
import src.models.modules as modules
from src.models.base import BaseModel
import src.models.distribution as distribution
class DRAW(BaseModel):
def __init__(self,
im_channel,
n_encoder_hidden,
n_decoder_hidden,
n_code,
im_size,
n_step,
):
# self._is_transform = is_transform
# self._trans_size = transform_size
self._n_channel = im_channel
self._im_size = L.get_shape2D(im_size)
self._n_pixel = self._im_size[0] * self._im_size[1] * self._n_channel
if not isinstance(n_encoder_hidden, list):
n_encoder_hidden = [n_encoder_hidden]
self._n_encoder_hidden = n_encoder_hidden
if not isinstance(n_decoder_hidden, list):
n_decoder_hidden = [n_decoder_hidden]
self._n_decoder_hidden = n_decoder_hidden
self._n_code = n_code
self._n_step = n_step
self.layers = {}
# def create_generate_model(self, b_size):
# self.set_is_training(False)
# self.layers['generate'] = self._create_generate_model(b_size)
# self.setup_summary()
def _create_generate_input(self):
""" receive and create training data
Args:
input_batch (tensor): Return of tf.data.Iterator.get_next() with length 1.
The order of data should be: image
"""
self.keep_prob = 1.
def create_generate_model(self, b_size):
self.set_is_training(False)
self._create_generate_input()
self.layers['cT'] = self._create_generate_model(b_size)
self.layers['generate'] = tf.reshape(
tf.sigmoid(self.layers['cT']), [-1, self._im_size[0], self._im_size[1], self._n_channel])
self.generate_summary_op = self.get_summary('generate')
self.global_step = 0
def _create_train_input(self, input_batch):
""" receive and create training data
Args:
input_batch (tensor): Return of tf.data.Iterator.get_next() with length 1.
The order of data should be: image
"""
self.raw_image = input_batch
self.image = tf.reshape(self.raw_image, (-1, self._n_pixel))
self.lr = tf.placeholder(tf.float32, name='lr')
self.keep_prob = tf.placeholder(tf.float32, name='keep_prob')
def create_train_model(self, input_batch):
self.set_is_training(True)
self._create_train_input(input_batch)
self.layers['cT'] = self._create_train_model()
self.layers['generate'] = tf.reshape(
tf.sigmoid(self.layers['cT']), [-1, self._im_size[0], self._im_size[1], self._n_channel])
self.train_op = self.get_train_op()
self.loss_op = self.get_loss()
self.train_summary_op = self.get_summary('train')
self.global_step = 0
def _create_train_model(self):
def _make_cell(hidden_size):
return L.make_LSTM_cell(hidden_size,
forget_bias=1.0,
is_training=self.is_training,
keep_prob=self.keep_prob)
with tf.name_scope('init'):
encoder_cell = tf.contrib.rnn.MultiRNNCell(
[_make_cell(hidden_size) for hidden_size in self._n_encoder_hidden])
decoder_cell = tf.contrib.rnn.MultiRNNCell(
[_make_cell(hidden_size) for hidden_size in self._n_decoder_hidden])
b_size = tf.shape(self.image)[0]
encoder_state = encoder_cell.zero_state(b_size, tf.float32)
decoder_state = decoder_cell.zero_state(b_size, tf.float32)
decoder_out = tf.zeros(shape=[b_size, self._n_decoder_hidden[-1]],
dtype=tf.float32)
c = tf.zeros_like(self.image)
self.layers['z_mu'] = [0] * self._n_step
self.layers['z_std'] = [0] * self._n_step
self.layers['z_log_std'] = [0] * self._n_step
for step_id in range(0, self._n_step):
with tf.variable_scope('step', reuse=tf.AUTO_REUSE):
with tf.name_scope('encoder_input'):
error_im = self.image - tf.sigmoid(c)
# error_im = tf.sigmoid(c)
r = modules.draw_read(self.image, error_im, decoder_out)
modules.draw_attention_read(
self.image, error_im, decoder_out,
im_size=self._im_size, filter_grid_size=12,
bn=True, init_w=None, wd=0,
is_training=self.is_training, trainable=True,
name='draw_attention_read')
encoder_input = tf.concat((r, decoder_out), axis=-1)
with tf.variable_scope('encoder'):
encoder_out, encoder_state = encoder_cell(encoder_input, encoder_state)
with tf.variable_scope('latent'):
z, self.layers['z_mu'][step_id], self.layers['z_std'][step_id], self.layers['z_log_std'][step_id] =\
self._latent_net(encoder_out)
with tf.variable_scope('decoder'):
decoder_out, decoder_state = decoder_cell(z, decoder_state)
with tf.name_scope('write'):
c = c + modules.draw_write(decoder_out, n_pixel=self._n_pixel, is_training=self.is_training)
return c
def _latent_net(self, inputs):
return modules.sample_gaussian_latent(
encoder_out=inputs,
embed_dim=self._n_code,
layer_dict=self.layers,
is_training=self.is_training,
init_w=None,
bn=False,
wd=0,
trainable=True,
name='sample_gaussian_latent')
def _create_generate_model(self, b_size):
self.layers['gen_step'] = [0] * self._n_step
def _make_cell(hidden_size):
return L.make_LSTM_cell(
hidden_size,
forget_bias=1.0,
is_training=self.is_training,
keep_prob=1.0)
gen_im = tf.zeros(shape=[b_size, self._n_pixel],
dtype=tf.float32)
with tf.name_scope('init'):
decoder_cell = tf.contrib.rnn.MultiRNNCell(
[_make_cell(hidden_size) for hidden_size in self._n_decoder_hidden])
decoder_state = decoder_cell.zero_state(b_size, tf.float32)
decoder_out = tf.zeros(shape=[b_size, self._n_decoder_hidden[-1]],
dtype=tf.float32)
c = tf.zeros_like(gen_im)
self.layers['gen_step'][0] = tf.reshape(
tf.sigmoid(c),
[b_size, self._im_size[0], self._im_size[1], self._n_channel])
for step_id in range(0, self._n_step):
with tf.variable_scope('step', reuse=tf.AUTO_REUSE):
z = distribution.tf_sample_standard_diag_guassian(b_size, self._n_code)
with tf.variable_scope('decoder'):
decoder_out, decoder_state = decoder_cell(z, decoder_state)
with tf.name_scope('write'):
c = c + modules.draw_write(decoder_out, n_pixel=self._n_pixel, is_training=self.is_training)
self.layers['gen_step'][step_id] = tf.reshape(
tf.sigmoid(c),
[b_size, self._im_size[0], self._im_size[1], self._n_channel])
# gen_im = tf.sigmoid(c)
# return tf.reshape(gen_im, [b_size, 28, 28, 1])
return c
def _get_loss(self):
with tf.name_scope('loss'):
with tf.name_scope('reconstruction'):
logits = self.layers['cT']
labels = self.image
recons_loss = tf.nn.sigmoid_cross_entropy_with_logits(
labels=self.image,
logits=logits,
name='recons_loss')
recons_loss = tf.reduce_mean(recons_loss) * self._n_pixel
with tf.name_scope('KL'):
self.layers['z_mu'] = tf.convert_to_tensor(self.layers['z_mu']) # [step, batch, code]
self.layers['z_std'] = tf.convert_to_tensor(self.layers['z_std'])
self.layers['z_log_std'] = tf.convert_to_tensor(self.layers['z_log_std'])
kl_loss = tf.reduce_sum(
tf.square(self.layers['z_mu'])
+ tf.square(self.layers['z_std'])
- 2 * self.layers['z_log_std'],
axis=[0, 2])
kl_loss = 0.5 * kl_loss - self._n_step / 2 # [batch]
kl_loss = tf.reduce_mean(kl_loss)
return recons_loss + kl_loss
def get_train_op(self):
loss = self.get_loss()
var_list = tf.trainable_variables()
opt = tf.train.AdamOptimizer(self.lr, beta1=0.5)
# grads = opt.compute_gradients(loss)
grads = tf.gradients(loss, var_list)
grads, _ = tf.clip_by_global_norm(grads, 5)
train_op = opt.apply_gradients(zip(grads, var_list))
return train_op
def get_summary(self, name):
with tf.name_scope('generate'):
tf.summary.image(
'generate',
tf.cast(self.layers['generate'], tf.float32),
collections=[name])
# assert key in ['train', 'test']
return tf.summary.merge_all(key=name)
# def setup_summary(self):
# with tf.name_scope('generate'):
# tf.summary.image(
# 'image',
# tf.cast(self.layers['generate'], tf.float32),
# collections=['generate'])
def train_epoch(self, sess, lr, summary_writer=None):
display_name_list = ['loss']
cur_summary = None
loss_sum = 0
step = 0
while True:
try:
step += 1
self.global_step += 1
_, loss, cur_summary = sess.run(
[self.train_op, self.loss_op, self.train_summary_op],
feed_dict={self.lr: lr, self.keep_prob: 1.})
loss_sum += loss
if step % 100 == 0:
viz.display(
self.global_step,
step,
[loss_sum],
display_name_list,
'train',
summary_val=cur_summary,
summary_writer=summary_writer)
except tf.errors.OutOfRangeError:
break
viz.display(
self.global_step,
step,
[loss_sum],
display_name_list,
'train',
summary_val=cur_summary,
summary_writer=summary_writer)
def generate_batch(self, sess, summary_writer=None):
display_name_list = []
self.global_step += 1
cur_summary = sess.run(self.generate_summary_op)
viz.display(
self.global_step,
1,
[],
display_name_list,
'train',
summary_val=cur_summary,
summary_writer=summary_writer)
def viz_generate_step(self, sess, save_path):
batch_step = sess.run(self.layers['gen_step'])
step_gen_im = np.vstack(batch_step)
viz.viz_batch_im(
batch_im=step_gen_im * 255.,
grid_size=[10, 10],
save_path='{}/generate_step.png'.format(save_path),
is_transpose=True)