Skip to content

compomics/ML-course-VIB-2024

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

VIB ML course 2024

Based on previous courses by Prof. Sven Degroeve.

This repository contains the Jupyter notebooks for the VIB Machine Learning & Deep Learning Workshop.

Getting started

Schedule

Day 1


9:30 Introduction to Machine Learning (Robbin Bouwmeester)

Lecture by Prof. Sven Degroeve: YouTube

Lecture slides: 1_introduction.pptx


10:00 Data fitting (Robbin Bouwmeester)

Lecture by Prof. Sven Degroeve: YouTube

Lecture slides: 2_regression.pptx

Some discussion about gradient descent.

Hands on: Histone_marks_lr.ipynb section 1


10:45 Break


11:00 Logistic regression (Robbin Bouwmeester)

Lecture by Prof. Sven Degroeve: YouTube

Lecture slides: 3_logistic_regression.pptx

Introduction to learning platform Kaggle + peptide retention time competition

Hands on: Histone_marks_lr.ipynb sections 2, 3 and 4


12:15 Lunch


13:15 Model complexity (Robbin Bouwmeester)

Lecture by Prof. Sven Degroeve: YouTube

Lecture slides: 4_regularization.pptx

Hands on: Histone_marks_lr.ipynb section 5


14:00 Bias & Variance (Robbin Bouwmeester)

Lecture by Prof. Sven Degroeve: YouTube

Lecture slides: 5_ensemble_learning.pptx

Hands on: Histone_marks_dt.ipynb


15:00 Kaggle Competition (Ralf Gabriels & Robbin Bouwmeester)

In this section it is up to you to fit and optimze a regression model, evaluate it, and make predictions on the test set. At this point there should be enough time to help each of you individually.

Day 2


09:30 What is deep learning? (Ralf Gabriels)

Lecture by Prof. Sven Degroeve: YouTube

Lecture slides: 6_deep_neural_networks.pptx


10:30 Break


10:45 CNNs and RNNs (Ralf Gabriels)

Hands on (CNN): Melanoma_CNN.ipynb (Kaggle)

Additional material (RNN): Pytorch lightning RNN

Lecture slides:

7_computer_vision.pptx

8_sequence_modeling.pptx


12:15 Lunch


13:15 CNNs and RNNs - continued (Ralf Gabriels)

Hands on (CNN): Melanoma_CNN.ipynb (Kaggle)

Additional material (RNN): Pytorch lightning RNN

Lecture slides:

7_computer_vision.pptx

8_sequence_modeling.pptx


13:45 Deep Generative Models (Robbin Bouwmeester)

Lecture slides: 9_deep_generative_models.pptx


14:30 Break


14:45 Discussions, Q&A, and competition (Ralf Gabriels & Robbin Bouwmeester)

https://playground.tensorflow.org/


16:50 Announcement of the competition winner & closing!

Further learning

Contact (open for collaborations)

Ralf Gabriels (ralf.gabriels@ugent.be) & Robbin Bouwmeester (robbin.bouwmeester@ugent.be)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%