-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsmac.jl
269 lines (213 loc) · 6.85 KB
/
smac.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#This is a test code.
#Sparse modeling approach to analytical continuation of imaginary-time quantum Monte Carlo data
# Please see, J. Otsuki et al., Phys. Rev. E 95, 061302(R) (2017).
# 10/18/2017(MM/DD/YYYY): This code was made by Yuki Nagai, Ph.D
module Smac
export smac_main!
using LinearAlgebra
function smac_main!(M,N,orbitals,omegamax,β,vec_G)
mat_K = zeros(Float64,M,N)
L = min(M,N)
#println(L)
println("Making the matrix K...")
mat_K = calc_K!(M,N,omegamax,β,mat_K)
println("done.")
println("Doing SVD...")
(U,S,V) = svd(mat_K)
println("done.")
ii = 0
for i in 1:L
ii += 1
if S[i] < 1e-10
break
end
end
L = ii
println("---------------------------------------------")
println("Singular values")
for i in 1:L
println(i,"\t",S[i])
end
println("---------------------------------------------")
#println(L)
vec_S = zeros(Float64,L)
vec_S[1:L] = S[1:L]
mat_U = zeros(Float64,M,L)
mat_U[1:M,1:L] = U[1:M,1:L]
#println(mat_U)
mat_V = zeros(Float64,N,L)
mat_V[1:N,1:L] = V[1:N,1:L]
#println(mat_Vt)
ξ = zeros(Float64,L)
e = fill(1.0,N)
ξ = mat_V'*e
#println(length(ξ))
vec_Gout = zeros(Float64,M,orbitals)
xout = zeros(Float64,N,orbitals)
for i in 1:orbitals
println("\n","orbital: ",i)
xout[:,i] = smac_est!(vec_G[:,i,1],M,N,mat_K,mat_U,vec_S,mat_V,ξ)
vec_Gout[:,i] = mat_K*xout[:,i]
println("---------------------------------------------")
end
return xout,vec_Gout
end
function smac_est!(y,M,N,mat_K,mat_U,vec_S,mat_V,ξ)
μ=1.0
μp = 1.0
fchiold = 0
λest = 0
l0 = -6.0
lam0 = 10.0^(l0)
λ =lam0
itemax = 100000
#xout = zeros(Float64,M)
xout = smac_calc!(y,N,itemax,mat_U,vec_S,mat_V,ξ,λ,μ,μp)
χ0 = dot(y-mat_K*xout,y-mat_K*xout)
#println("χ0 ",χ0)
lchi0 = log10(χ0)
l1 = 1.0
lam1 = 10.0^(l1)
λ =lam1
xout = smac_calc!(y,N,itemax,mat_U,vec_S,mat_V,ξ,λ,μ,μp)
χ1 = dot(y-mat_K*xout,y-mat_K*xout)
#println("χ1 ",χ1)
lchi1 = log10(χ1)
b = (log(χ0)-log(χ1))/(log(lam0)-log(lam1))
a = exp(log(χ0) - b*log(lam0))
for il in 2:20-1
ll = (il-1)*(l1-l0)/(20-1)+ l0
#println("ll ",ll)
λ = 10^(ll)
xout = smac_calc!(y,N,itemax,mat_U,vec_S,mat_V,ξ,λ,μ,μp)
χ1 = dot(y-mat_K*xout,y-mat_K*xout)
fchi = a*λ^b/χ1
println(il-1,"/","18\t","λ:",λ,"\t\t", "Error:",χ1, "\t")
#println(il,"/","19\t",λ,"\t", χ1, "\t", fchi)
if il > 3
if fchi > fchiold
λest = λ
fchiold = fchi
end
else
fchiold = fchi
end
end
λ = λest
itemax = 1000000
println("Appropriate λ: ",λ)
println("Calculating final SMAC...")
xout = smac_calc!(y,N,itemax,mat_U,vec_S,mat_V,ξ,λ,μ,μp)
println("Done.")
return xout
end
function smac_calc!(y,N,itemax,mat_U,vec_S,mat_V,ξ,λ,μ,μp)
L = length(vec_S)
yp = zeros(Float64,L)
yp = mat_U'*y
#println(sum(y))
styp = zeros(Float64,L)
stxp = zeros(Float64,L)
xp = zeros(Float64,L)
zp = zeros(Float64,L)
up = zeros(Float64,L)
z = zeros(Float64,N)
u = zeros(Float64,N)
for i in 1:L
styp[i] = vec_S[i]*yp[i]
end
#println(sum(styp))
for ite in 1:itemax
(xp,zp,up,z,u)=smac_updates!(styp,xp,zp,up,z,u,vec_S,mat_V,ξ,λ,μ,μp)
#println(sum(xp))
for i in 1:L
stxp[i] = vec_S[i]*xp[i]
end
#hi = dot(yp-stxp,yp-stxp)
#println(ite," ", sum(abs.(z - mat_V*xp)))
#if ite % (itemax/10) == 0
# println(ite,"\t", sum(abs.(z - mat_V*xp)))
#end
if sum(abs.(z - mat_V*xp)) < 1e-8
break
end
end
#xout = zeros(Float64,M)
xout = mat_V*xp
return xout
end
function smac_updates!(styp,xp,zp,up,z,u,vec_S,mat_V,ξ,λ,μ,μp)
L = length(vec_S)
vec_temp2 = zeros(Float64,L)
vec_temp2 = z-u
vec_temp = zeros(Float64,L)
vec_temp = mat_V'*vec_temp2
ξ1 = zeros(Float64,L)
ξ2 = zeros(Float64,L)
ξ1 = styp/λ+μp*(zp-up) + μ*vec_temp
ξ2 = ξ
mat_inv= zeros(Float64,L,L)
for i in 1:L
mat_inv[i,i] = 1.0/(vec_S[i]^2/λ+(μ+μp))
end
ξ1 = mat_inv*ξ1
ξ2 = mat_inv*ξ2
ν = (1.0-sum(mat_V*ξ1))/sum(mat_V*ξ2)
#println(length(ξ1),"\n",length(ξ2),"\n",length(xp))
#println(ξ2)
xp = ξ1 + ν*ξ2
#println(xp)
zp = calc_salpha!(1/μp,xp + up)
up += xp - zp
z = calc_P!(mat_V*(xp)+u)
u += mat_V*xp - z
return xp,zp,up,z,u
end
function calc_P!(x)
vec_px = zeros(Float64,length(x))
for i in 1:length(x)
vec_px[i] = max(x[i],0.0)
end
return vec_px
end
function calc_salpha!(alpha,x)
L = length(x)
salpha = zeros(Float64,L)
for i in 1:L
if x[i] > alpha
salpha[i] = x[i] - alpha
elseif x[i] < - alpha
salpha[i] = x[i] + alpha
else
salpha[i] = 0.0
end
end
return salpha
end
function calc_K!(M,N,omegamax,β,mat_K)
dτ = β/(M-1)
dω = 2omegamax/(N-1)
for iome in 1:N
ω = (iome-1)dω-omegamax
for itau in 1:M
τ = (itau-1)dτ
td = τ*ω
if td > 50.0
et1 = exp(50.0)
else
et1 = exp(td)
end
td =(τ-β)ω
if td > 50.0
et2 = exp(50.0)
else
et2 = exp(td)
end
mat_K[itau,iome] = 1.0/(et1+et2)
#println(mat_K[itau,iome])
#println(td)
end
end
return mat_K
end
end