Skip to content

coin-vision/experiments

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Computer Vision experiments on coinshome.net datasets

medium-4000 dataset is used
[3-20] unique images per class for training set
first level augmentation x137 => [411 - 2,740] images/class max
5,091,605 total train images 
rest of the images go to validation set (without first level augmentation)
118,840 total validation images


After 1.5 epoc accuracy 0.98 top_5 accuracy 0.999 on tr set 
trainig steps per epoc:  79556.328125
Epoch 1/3
79557/79556 [==============================] - 109165s 1s/step - loss: 0.9718 - acc: 0.8000 - top_k_categorical_accuracy: 0.8911

Epoch 00001: saving model to /home/spa/coin-vision/ssd-data/medium-4000-20190205/inception_v3_20190212-085833.hdf5
Epoch 2/3
45939/79556 [================>.............] - ETA: 12:45:05 - loss: 0.0582 - acc: 0.9811 - top_k_categorical_accuracy: 0.9993

TODO: firs level augmentation can be much less (e.g. exclude rotation because it's used in keras ImageDataGenerator)

interesting that model.fit_generator() doesn't work with 'validation_data' when 'validation_data' doesn't have data for all classes. So, validation check was commented out for that run


history = model.fit_generator(train_gen, 
                              epochs=train_epochs, 
                              steps_per_epoch=tr_steps_per_epoch,
                              shuffle=True, 
                              verbose=True,
#                              validation_data=test_gen,
#                              validation_steps=validation_steps, # fix me later if works
                              callbacks=callbacks_list)
                              

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published