-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathnorb.py
699 lines (575 loc) · 27.2 KB
/
norb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
# Loader taken from https://github.com/mavanb/vision/blob/448fac0f38cab35a387666d553b9d5e4eec4c5e6/torchvision/datasets/utils.py
from __future__ import print_function
import os
import errno
import struct
import torch
import torch.utils.data as data
import numpy as np
from PIL import Image
from torchvision.datasets.utils import download_url, check_integrity
class smallNORB(data.Dataset):
"""`MNIST <https://cs.nyu.edu/~ylclab/data/norb-v1.0-small//>`_ Dataset.
Args:
root (string): Root directory of dataset where processed folder and
and raw folder exist.
train (bool, optional): If True, creates dataset from the training files,
otherwise from the test files.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If the dataset is already processed, it is not processed
and downloaded again. If dataset is only already downloaded, it is not
downloaded again.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
info_transform (callable, optional): A function/transform that takes in the
info and transforms it.
mode (string, optional): Denotes how the images in the data files are returned. Possible values:
- all (default): both left and right are included separately.
- stereo: left and right images are included as corresponding pairs.
- left: only the left images are included.
- right: only the right images are included.
"""
dataset_root = "https://cs.nyu.edu/~ylclab/data/norb-v1.0-small/"
data_files = {
'train': {
'dat': {
"name": 'smallnorb-5x46789x9x18x6x2x96x96-training-dat.mat',
"md5_gz": "66054832f9accfe74a0f4c36a75bc0a2",
"md5": "8138a0902307b32dfa0025a36dfa45ec"
},
'info': {
"name": 'smallnorb-5x46789x9x18x6x2x96x96-training-info.mat',
"md5_gz": "51dee1210a742582ff607dfd94e332e3",
"md5": "19faee774120001fc7e17980d6960451"
},
'cat': {
"name": 'smallnorb-5x46789x9x18x6x2x96x96-training-cat.mat',
"md5_gz": "23c8b86101fbf0904a000b43d3ed2fd9",
"md5": "fd5120d3f770ad57ebe620eb61a0b633"
},
},
'test': {
'dat': {
"name": 'smallnorb-5x01235x9x18x6x2x96x96-testing-dat.mat',
"md5_gz": "e4ad715691ed5a3a5f138751a4ceb071",
"md5": "e9920b7f7b2869a8f1a12e945b2c166c"
},
'info': {
"name": 'smallnorb-5x01235x9x18x6x2x96x96-testing-info.mat',
"md5_gz": "a9454f3864d7fd4bb3ea7fc3eb84924e",
"md5": "7c5b871cc69dcadec1bf6a18141f5edc"
},
'cat': {
"name": 'smallnorb-5x01235x9x18x6x2x96x96-testing-cat.mat',
"md5_gz": "5aa791cd7e6016cf957ce9bdb93b8603",
"md5": "fd5120d3f770ad57ebe620eb61a0b633"
},
},
}
raw_folder = 'raw'
processed_folder = 'processed'
train_image_file = 'train_img'
train_label_file = 'train_label'
train_info_file = 'train_info'
test_image_file = 'test_img'
test_label_file = 'test_label'
test_info_file = 'test_info'
extension = '.pt'
def __init__(self, root, train=True, transform=None, target_transform=None, info_transform=None, download=False,
mode="all"):
self.root = os.path.expanduser(root)
self.transform = transform
self.target_transform = target_transform
self.info_transform = info_transform
self.train = train # training set or test set
self.mode = mode
if download:
self.download()
if not self._check_exists():
raise RuntimeError('Dataset not found or corrupted.' +
' You can use download=True to download it')
# load test or train set
image_file = self.train_image_file if self.train else self.test_image_file
label_file = self.train_label_file if self.train else self.test_label_file
info_file = self.train_info_file if self.train else self.test_info_file
# load labels
self.labels = self._load(label_file)
# load info files
self.infos = self._load(info_file)
# load right set
if self.mode == "left":
self.data = self._load("{}_left".format(image_file))
# load left set
elif self.mode == "right":
self.data = self._load("{}_right".format(image_file))
elif self.mode == "all" or self.mode == "stereo":
left_data = self._load("{}_left".format(image_file))
right_data = self._load("{}_right".format(image_file))
# load stereo
if self.mode == "stereo":
self.data = torch.stack((left_data, right_data), dim=1)
# load all
else:
self.data = torch.cat((left_data, right_data), dim=0)
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
mode ``all'', ``left'', ``right'':
tuple: (image, target, info)
mode ``stereo'':
tuple: (image left, image right, target, info)
"""
target = self.labels[index % 24300] if self.mode is "all" else self.labels[index]
if self.target_transform is not None:
target = self.target_transform(target)
info = self.infos[index % 24300] if self.mode is "all" else self.infos[index]
if self.info_transform is not None:
info = self.info_transform(info)
if self.mode == "stereo":
img_left = self._transform(self.data[index, 0])
img_right = self._transform(self.data[index, 1])
return img_left, img_right, target, info
img = self._transform(self.data[index])
return img, target
def __len__(self):
return len(self.data)
def _transform(self, img):
# doing this so that it is consistent with all other data sets
# to return a PIL Image
img = Image.fromarray(img.numpy(), mode='L')
if self.transform is not None:
img = self.transform(img)
return img
def _load(self, file_name):
return torch.load(os.path.join(self.root, self.processed_folder, file_name + self.extension))
def _save(self, file, file_name):
with open(os.path.join(self.root, self.processed_folder, file_name + self.extension), 'wb') as f:
torch.save(file, f)
def _check_exists(self):
""" Check if processed files exists."""
files = (
"{}_left".format(self.train_image_file),
"{}_right".format(self.train_image_file),
"{}_left".format(self.test_image_file),
"{}_right".format(self.test_image_file),
self.test_label_file,
self.train_label_file
)
fpaths = [os.path.exists(os.path.join(self.root, self.processed_folder, f + self.extension)) for f in files]
return False not in fpaths
def _flat_data_files(self):
return [j for i in self.data_files.values() for j in list(i.values())]
def _check_integrity(self):
"""Check if unpacked files have correct md5 sum."""
root = self.root
for file_dict in self._flat_data_files():
filename = file_dict["name"]
md5 = file_dict["md5"]
fpath = os.path.join(root, self.raw_folder, filename)
if not check_integrity(fpath, md5):
return False
return True
def download(self):
"""Download the SmallNORB data if it doesn't exist in processed_folder already."""
import gzip
if self._check_exists():
return
# check if already extracted and verified
if self._check_integrity():
print('Files already downloaded and verified')
else:
# download and extract
for file_dict in self._flat_data_files():
url = self.dataset_root + file_dict["name"] + '.gz'
filename = file_dict["name"]
gz_filename = filename + '.gz'
md5 = file_dict["md5_gz"]
fpath = os.path.join(self.root, self.raw_folder, filename)
gz_fpath = fpath + '.gz'
# download if compressed file not exists and verified
download_url(url, os.path.join(self.root, self.raw_folder), gz_filename, md5)
print('# Extracting data {}\n'.format(filename))
with open(fpath, 'wb') as out_f, \
gzip.GzipFile(gz_fpath) as zip_f:
out_f.write(zip_f.read())
os.unlink(gz_fpath)
# process and save as torch files
print('Processing...')
# create processed folder
try:
os.makedirs(os.path.join(self.root, self.processed_folder))
except OSError as e:
if e.errno == errno.EEXIST:
pass
else:
raise
# read train files
left_train_img, right_train_img = self._read_image_file(self.data_files["train"]["dat"]["name"])
train_info = self._read_info_file(self.data_files["train"]["info"]["name"])
train_label = self._read_label_file(self.data_files["train"]["cat"]["name"])
# read test files
left_test_img, right_test_img = self._read_image_file(self.data_files["test"]["dat"]["name"])
test_info = self._read_info_file(self.data_files["test"]["info"]["name"])
test_label = self._read_label_file(self.data_files["test"]["cat"]["name"])
# save training files
self._save(left_train_img, "{}_left".format(self.train_image_file))
self._save(right_train_img, "{}_right".format(self.train_image_file))
self._save(train_label, self.train_label_file)
self._save(train_info, self.train_info_file)
# save test files
self._save(left_test_img, "{}_left".format(self.test_image_file))
self._save(right_test_img, "{}_right".format(self.test_image_file))
self._save(test_label, self.test_label_file)
self._save(test_info, self.test_info_file)
print('Done!')
@staticmethod
def _parse_header(file_pointer):
# Read magic number and ignore
struct.unpack('<BBBB', file_pointer.read(4)) # '<' is little endian)
# Read dimensions
dimensions = []
num_dims, = struct.unpack('<i', file_pointer.read(4)) # '<' is little endian)
for _ in range(num_dims):
dimensions.extend(struct.unpack('<i', file_pointer.read(4)))
return dimensions
def _read_image_file(self, file_name):
fpath = os.path.join(self.root, self.raw_folder, file_name)
with open(fpath, mode='rb') as f:
dimensions = self._parse_header(f)
assert dimensions == [24300, 2, 96, 96]
num_samples, _, height, width = dimensions
left_samples = np.zeros(shape=(num_samples, height, width), dtype=np.uint8)
right_samples = np.zeros(shape=(num_samples, height, width), dtype=np.uint8)
for i in range(num_samples):
# left and right images stored in pairs, left first
left_samples[i, :, :] = self._read_image(f, height, width)
right_samples[i, :, :] = self._read_image(f, height, width)
return torch.ByteTensor(left_samples), torch.ByteTensor(right_samples)
@staticmethod
def _read_image(file_pointer, height, width):
"""Read raw image data and restore shape as appropriate. """
image = struct.unpack('<' + height * width * 'B', file_pointer.read(height * width))
image = np.uint8(np.reshape(image, newshape=(height, width)))
return image
def _read_label_file(self, file_name):
fpath = os.path.join(self.root, self.raw_folder, file_name)
with open(fpath, mode='rb') as f:
dimensions = self._parse_header(f)
assert dimensions == [24300]
num_samples = dimensions[0]
struct.unpack('<BBBB', f.read(4)) # ignore this integer
struct.unpack('<BBBB', f.read(4)) # ignore this integer
labels = np.zeros(shape=num_samples, dtype=np.int32)
for i in range(num_samples):
category, = struct.unpack('<i', f.read(4))
labels[i] = category
return torch.LongTensor(labels)
def _read_info_file(self, file_name):
fpath = os.path.join(self.root, self.raw_folder, file_name)
with open(fpath, mode='rb') as f:
dimensions = self._parse_header(f)
assert dimensions == [24300, 4]
num_samples, num_info = dimensions
struct.unpack('<BBBB', f.read(4)) # ignore this integer
infos = np.zeros(shape=(num_samples, num_info), dtype=np.int32)
for r in range(num_samples):
for c in range(num_info):
info, = struct.unpack('<i', f.read(4))
infos[r, c] = info
return torch.LongTensor(infos)
class smallNORBViewPoint(data.Dataset):
"""`MNIST <https://cs.nyu.edu/~ylclab/data/norb-v1.0-small//>`_ Dataset.
Args:
root (string): Root directory of dataset where processed folder and
and raw folder exist.
train (bool, optional): If True, creates dataset from the training files,
otherwise from the test files.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If the dataset is already processed, it is not processed
and downloaded again. If dataset is only already downloaded, it is not
downloaded again.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
info_transform (callable, optional): A function/transform that takes in the
info and transforms it.
mode (string, optional): Denotes how the images in the data files are returned. Possible values:
- all (default): both left and right are included separately.
- stereo: left and right images are included as corresponding pairs.
- left: only the left images are included.
- right: only the right images are included.
"""
dataset_root = "https://cs.nyu.edu/~ylclab/data/norb-v1.0-small/"
data_files = {
'train': {
'dat': {
"name": 'smallnorb-5x46789x9x18x6x2x96x96-training-dat.mat',
"md5_gz": "66054832f9accfe74a0f4c36a75bc0a2",
"md5": "8138a0902307b32dfa0025a36dfa45ec"
},
'info': {
"name": 'smallnorb-5x46789x9x18x6x2x96x96-training-info.mat',
"md5_gz": "51dee1210a742582ff607dfd94e332e3",
"md5": "19faee774120001fc7e17980d6960451"
},
'cat': {
"name": 'smallnorb-5x46789x9x18x6x2x96x96-training-cat.mat',
"md5_gz": "23c8b86101fbf0904a000b43d3ed2fd9",
"md5": "fd5120d3f770ad57ebe620eb61a0b633"
},
},
'test': {
'dat': {
"name": 'smallnorb-5x01235x9x18x6x2x96x96-testing-dat.mat',
"md5_gz": "e4ad715691ed5a3a5f138751a4ceb071",
"md5": "e9920b7f7b2869a8f1a12e945b2c166c"
},
'info': {
"name": 'smallnorb-5x01235x9x18x6x2x96x96-testing-info.mat',
"md5_gz": "a9454f3864d7fd4bb3ea7fc3eb84924e",
"md5": "7c5b871cc69dcadec1bf6a18141f5edc"
},
'cat': {
"name": 'smallnorb-5x01235x9x18x6x2x96x96-testing-cat.mat',
"md5_gz": "5aa791cd7e6016cf957ce9bdb93b8603",
"md5": "fd5120d3f770ad57ebe620eb61a0b633"
},
},
}
raw_folder = 'raw'
processed_folder = 'processed'
train_image_file = 'train_img'
train_label_file = 'train_label'
train_info_file = 'train_info'
test_image_file = 'test_img'
test_label_file = 'test_label'
test_info_file = 'test_info'
extension = '.pt'
def __init__(self, root, exp='azimuth', train=True, familiar=True, transform=None, target_transform=None, info_transform=None, download=False,
mode="all"):
self.root = os.path.expanduser(root)
self.transform = transform
self.target_transform = target_transform
self.info_transform = info_transform
self.train = train # training set or test set
self.familiar = familiar
self.mode = mode
if download:
self.download()
if not self._check_exists():
raise RuntimeError('Dataset not found or corrupted.' +
' You can use download=True to download it')
# load test or train set
image_file = self.train_image_file if self.train else self.test_image_file
label_file = self.train_label_file if self.train else self.test_label_file
info_file = self.train_info_file if self.train else self.test_info_file
# load labels
self.labels = self._load(label_file)
# load info files
self.infos = self._load(info_file)
# load right set
if self.mode == "left":
self.data = self._load("{}_left".format(image_file))
# load left set
elif self.mode == "right":
self.data = self._load("{}_right".format(image_file))
elif self.mode == "all" or self.mode == "stereo":
left_data = self._load("{}_left".format(image_file))
right_data = self._load("{}_right".format(image_file))
# load stereo
if self.mode == "stereo":
self.data = torch.stack((left_data, right_data), dim=1)
# load all
else:
self.data = torch.cat((left_data, right_data), dim=0)
# prepare exp
img, tar, inf = [], [], []
if exp == 'azimuth':
self.anno_dim = 2
self.train_anno = [0, 2, 4, 34, 32, 30]
elif exp == 'elevation':
self.anno_dim = 1
self.train_anno = [0, 1, 2]
else:
raise NotImplementedError
indices = []
for i, info in enumerate(self.infos):
info = info[self.anno_dim].data.item()
if (info in self.train_anno) == (self.train or self.familiar):
indices.append(i)
self.data = self.data[indices + [i + 24300 for i in indices]] if self.mode is 'all' else self.data[indices]
self.labels = self.labels[indices]
self.infos = self.infos[indices]
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
mode ``all'', ``left'', ``right'':
tuple: (image, target, info)
mode ``stereo'':
tuple: (image left, image right, target, info)
"""
target = self.labels[index % len(self.infos)] if self.mode is "all" else self.labels[index]
if self.target_transform is not None:
target = self.target_transform(target)
info = self.infos[index % len(self.infos)] if self.mode is "all" else self.infos[index]
if self.info_transform is not None:
info = self.info_transform(info)
if self.mode == "stereo":
img_left = self._transform(self.data[index, 0])
img_right = self._transform(self.data[index, 1])
return img_left, img_right, target, info
img = self._transform(self.data[index])
return img, target
def __len__(self):
return len(self.data)
def _transform(self, img):
# doing this so that it is consistent with all other data sets
# to return a PIL Image
img = Image.fromarray(img.numpy(), mode='L')
if self.transform is not None:
img = self.transform(img)
return img
def _load(self, file_name):
return torch.load(os.path.join(self.root, self.processed_folder, file_name + self.extension))
def _save(self, file, file_name):
with open(os.path.join(self.root, self.processed_folder, file_name + self.extension), 'wb') as f:
torch.save(file, f)
def _check_exists(self):
""" Check if processed files exists."""
files = (
"{}_left".format(self.train_image_file),
"{}_right".format(self.train_image_file),
"{}_left".format(self.test_image_file),
"{}_right".format(self.test_image_file),
self.test_label_file,
self.train_label_file
)
fpaths = [os.path.exists(os.path.join(self.root, self.processed_folder, f + self.extension)) for f in files]
return False not in fpaths
def _flat_data_files(self):
return [j for i in self.data_files.values() for j in list(i.values())]
def _check_integrity(self):
"""Check if unpacked files have correct md5 sum."""
root = self.root
for file_dict in self._flat_data_files():
filename = file_dict["name"]
md5 = file_dict["md5"]
fpath = os.path.join(root, self.raw_folder, filename)
if not check_integrity(fpath, md5):
return False
return True
def download(self):
"""Download the SmallNORB data if it doesn't exist in processed_folder already."""
import gzip
if self._check_exists():
return
# check if already extracted and verified
if self._check_integrity():
print('Files already downloaded and verified')
else:
# download and extract
for file_dict in self._flat_data_files():
url = self.dataset_root + file_dict["name"] + '.gz'
filename = file_dict["name"]
gz_filename = filename + '.gz'
md5 = file_dict["md5_gz"]
fpath = os.path.join(self.root, self.raw_folder, filename)
gz_fpath = fpath + '.gz'
# download if compressed file not exists and verified
download_url(url, os.path.join(self.root, self.raw_folder), gz_filename, md5)
print('# Extracting data {}\n'.format(filename))
with open(fpath, 'wb') as out_f, \
gzip.GzipFile(gz_fpath) as zip_f:
out_f.write(zip_f.read())
os.unlink(gz_fpath)
# process and save as torch files
print('Processing...')
# create processed folder
try:
os.makedirs(os.path.join(self.root, self.processed_folder))
except OSError as e:
if e.errno == errno.EEXIST:
pass
else:
raise
# read train files
left_train_img, right_train_img = self._read_image_file(self.data_files["train"]["dat"]["name"])
train_info = self._read_info_file(self.data_files["train"]["info"]["name"])
train_label = self._read_label_file(self.data_files["train"]["cat"]["name"])
# read test files
left_test_img, right_test_img = self._read_image_file(self.data_files["test"]["dat"]["name"])
test_info = self._read_info_file(self.data_files["test"]["info"]["name"])
test_label = self._read_label_file(self.data_files["test"]["cat"]["name"])
# save training files
self._save(left_train_img, "{}_left".format(self.train_image_file))
self._save(right_train_img, "{}_right".format(self.train_image_file))
self._save(train_label, self.train_label_file)
self._save(train_info, self.train_info_file)
# save test files
self._save(left_test_img, "{}_left".format(self.test_image_file))
self._save(right_test_img, "{}_right".format(self.test_image_file))
self._save(test_label, self.test_label_file)
self._save(test_info, self.test_info_file)
print('Done!')
@staticmethod
def _parse_header(file_pointer):
# Read magic number and ignore
struct.unpack('<BBBB', file_pointer.read(4)) # '<' is little endian)
# Read dimensions
dimensions = []
num_dims, = struct.unpack('<i', file_pointer.read(4)) # '<' is little endian)
for _ in range(num_dims):
dimensions.extend(struct.unpack('<i', file_pointer.read(4)))
return dimensions
def _read_image_file(self, file_name):
fpath = os.path.join(self.root, self.raw_folder, file_name)
with open(fpath, mode='rb') as f:
dimensions = self._parse_header(f)
assert dimensions == [24300, 2, 96, 96]
num_samples, _, height, width = dimensions
left_samples = np.zeros(shape=(num_samples, height, width), dtype=np.uint8)
right_samples = np.zeros(shape=(num_samples, height, width), dtype=np.uint8)
for i in range(num_samples):
# left and right images stored in pairs, left first
left_samples[i, :, :] = self._read_image(f, height, width)
right_samples[i, :, :] = self._read_image(f, height, width)
return torch.ByteTensor(left_samples), torch.ByteTensor(right_samples)
@staticmethod
def _read_image(file_pointer, height, width):
"""Read raw image data and restore shape as appropriate. """
image = struct.unpack('<' + height * width * 'B', file_pointer.read(height * width))
image = np.uint8(np.reshape(image, newshape=(height, width)))
return image
def _read_label_file(self, file_name):
fpath = os.path.join(self.root, self.raw_folder, file_name)
with open(fpath, mode='rb') as f:
dimensions = self._parse_header(f)
assert dimensions == [24300]
num_samples = dimensions[0]
struct.unpack('<BBBB', f.read(4)) # ignore this integer
struct.unpack('<BBBB', f.read(4)) # ignore this integer
labels = np.zeros(shape=num_samples, dtype=np.int32)
for i in range(num_samples):
category, = struct.unpack('<i', f.read(4))
labels[i] = category
return torch.LongTensor(labels)
def _read_info_file(self, file_name):
fpath = os.path.join(self.root, self.raw_folder, file_name)
with open(fpath, mode='rb') as f:
dimensions = self._parse_header(f)
assert dimensions == [24300, 4]
num_samples, num_info = dimensions
struct.unpack('<BBBB', f.read(4)) # ignore this integer
infos = np.zeros(shape=(num_samples, num_info), dtype=np.int32)
for r in range(num_samples):
for c in range(num_info):
info, = struct.unpack('<i', f.read(4))
infos[r, c] = info
return torch.LongTensor(infos)