-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathget_fin_report.py
383 lines (343 loc) · 19.9 KB
/
get_fin_report.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import os
from time import sleep
import pandas as pd
from bs4 import BeautifulSoup
import requests
import asyncio
import json
from aiohttp import ClientSession, ClientResponseError
# from aiohttp_sse_client import client as sse_client
from iexfinance.base import _IEXBase
from dotenv import load_dotenv
load_dotenv()
# from functools import lru_cache # https://gist.github.com/Morreski/c1d08a3afa4040815eafd3891e16b945
# Local imports
from __init__ import TIMEOUT_12HR, CURRENT_YEAR, ticker_dict, get_us_exchanges
from app import cache, cache_redis, logger
# @lru_cache(maxsize = 100) # now using Flask-Caching in app.py for sharing memory across instances, sessions, time-based expiry
@cache.memoize(timeout=TIMEOUT_12HR)
def get_financial_report(ticker):
if ticker not in ticker_dict(): # Validate with https://sandbox.iexapis.com/stable/ref-data/symbols?token=
raise ValueError("Invalid Ticker entered: " + ticker)
urlincome = 'https://www.marketwatch.com/investing/stock/'+ticker+'/financials'
urlbalancesheet = 'https://www.marketwatch.com/investing/stock/'+ticker+'/financials/balance-sheet'
urlcashflow = 'https://www.marketwatch.com/investing/stock/'+ticker+'/financials/cash-flow'
urlqincome = urlincome + '/income/quarter'
urlqbalancesheet = urlbalancesheet + '/quarter'
urlqcashflow = urlcashflow + '/quarter'
urls = [urlincome, urlbalancesheet, urlcashflow, urlqincome, urlqbalancesheet, urlqcashflow]
findata_keys = ['ais', 'abs', 'acf', 'qis', 'qbs', 'qcf']
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
# future = asyncio.ensure_future(fetch_async(urls, format = 'text'))
souped_text_list = loop.run_until_complete(fetch_async(urls, format = 'text'))
finsoup = {k:souped_text_list[idx] for idx, k in enumerate(findata_keys)}
# build lists for the Financial statements
isdata_lines = {'revenue': [], 'eps': [], 'pretaxincome': [], 'netincome': [],
'interestexpense': [], 'randd': [], 'ebitda': [], 'shares': []
}
bsdata_lines = {'equity': [], 'ltd': [], 'totalassets': [], 'intangibleassets': [],
'currentliab': [], 'cash': []
}
cfdata_lines = {'capex': [], 'fcf': []}
# find the table headers for the Financial statements
fin_titles = {k:get_titles(finsoup[k]) for k in findata_keys}
isdata_lines = get_income_data(fin_titles, isdata_lines)
bsdata_lines = get_balancesheet_data(fin_titles, bsdata_lines)
cfdata_lines = get_cashflow_data(fin_titles, cfdata_lines)
#get the data from the fin statement lists and use helper function get_element to index for format line#
revenue = get_element(isdata_lines['revenue'],0) + get_element(isdata_lines['revenue'],2)
revenueGrowth = get_element(isdata_lines['revenue'],1) + get_element(isdata_lines['revenue'],3)
if len(isdata_lines['revenue']) == 10: # for Financial companies top-line, add Interest and non-Interest Income
net_interest_income_after_provision = get_element(isdata_lines['revenue'],2) + get_element(isdata_lines['revenue'],7)
non_interest_income = get_element(isdata_lines['revenue'],4) + get_element(isdata_lines['revenue'],9)
revenue = [get_string_from_number(get_number_from_string(net_interest_income_after_provision[y])+get_number_from_string(nii)) for y, nii in enumerate(non_interest_income)]
revenueGrowth = get_element(isdata_lines['revenue'],3) + get_element(isdata_lines['revenue'],8)
eps = get_element(isdata_lines['eps'],0) + get_element(isdata_lines['eps'],2)
epsGrowth = get_element(isdata_lines['eps'],1) + get_element(isdata_lines['eps'],3)
preTaxIncome = get_element(isdata_lines['pretaxincome'],0) + get_element(isdata_lines['pretaxincome'],2)
netIncome = get_element(isdata_lines['netincome'],1) + get_element(isdata_lines['netincome'],6)
interestExpense = get_element(isdata_lines['interestexpense'],0) + (get_element(isdata_lines['interestexpense'],3) if len(isdata_lines['interestexpense'][3]) ==1 else get_element(isdata_lines['interestexpense'],4))
resanddev = get_element(isdata_lines['randd'],0) + get_element(isdata_lines['randd'],1)
ebitda = get_element(isdata_lines['ebitda'],0) + get_element(isdata_lines['ebitda'],3)
outstanding_shares = get_element(isdata_lines['shares'],0) + get_element(isdata_lines['shares'],1)
shareholderEquity = get_element(bsdata_lines['equity'],0) + get_element(bsdata_lines['equity'],2)
longtermDebt = get_element(bsdata_lines['ltd'],0) + get_element(bsdata_lines['ltd'],1)
if bsdata_lines['totalassets'][1][0] != '-':
totalAssets = get_element(bsdata_lines['totalassets'],1) + get_element(bsdata_lines['totalassets'],1+int(len(bsdata_lines['totalassets'])/2))
else:
totalAssets = get_element(bsdata_lines['totalassets'],0) + get_element(bsdata_lines['totalassets'],6)
if get_number_from_string(totalAssets[0]) < 10: # another special case?
totalAssets = get_element(bsdata_lines['totalassets'],0) + get_element(bsdata_lines['totalassets'],4)
intangibleAssets = get_element(bsdata_lines['intangibleassets'],0) + get_element(bsdata_lines['intangibleassets'],1)
currentLiabilities = get_element(bsdata_lines['currentliab'],0) + get_element(bsdata_lines['currentliab'],1)
if all([c == '-' for c in currentLiabilities]):
currentLiabilities = ['0'] * len(totalAssets)
cash = get_element(bsdata_lines['cash'],0) + get_element(bsdata_lines['cash'],2)
# some companies data doesn't have Net Investing Cash Flow Growth or Net Investing Cash Flow / Sales
capEx = get_element(cfdata_lines['capex'],0) + get_element(cfdata_lines['capex'],int(len(cfdata_lines['capex'])/2))
fcf = get_element(cfdata_lines['fcf'],0) + get_element(cfdata_lines['fcf'],3)
# load all the data into dataframe
df= pd.DataFrame({'Revenue($)': revenue, 'Revenue Growth(%)': revenueGrowth, 'EPS($)': eps, 'EPS Growth(%)': epsGrowth,
'Pretax Income($)': preTaxIncome, 'Net Income($)': netIncome, 'Interest Expense($)': interestExpense,
'EBITDA($)': ebitda, 'Research & Development($)': resanddev, 'Shares Outstanding': outstanding_shares,
'Longterm Debt($)': longtermDebt, 'Shareholder Equity($)': shareholderEquity,
'Total Assets($)': totalAssets, 'Intangible Assets($)': intangibleAssets,
'Total Current Liabilities($)': currentLiabilities, 'Cash($)': cash,
'Net Investing Cash Flow($)': capEx, 'Free Cash Flow($)': fcf
},index=range(CURRENT_YEAR-5,CURRENT_YEAR+1))
df.reset_index(inplace=True)
# Derived Financial Metrics/Ratios
df['Net Profit Margin(%)'] = (df['Net Income($)'].apply(get_number_from_string) / df['Revenue($)'].apply(get_number_from_string)).apply(get_string_from_number)
df['Capital Employed($)'] = df['Total Assets($)'].apply(get_number_from_string) - df['Total Current Liabilities($)'].apply(get_number_from_string)
df['Sales-to-Capital(%)'] = (df['Revenue($)'].apply(get_number_from_string) / df['Capital Employed($)']).apply(get_string_from_number)
df['ROCE(%)'] = (df['Net Income($)'].apply(get_number_from_string) / df['Capital Employed($)']).apply(get_string_from_number)
df['Capital Employed($)'] = df['Capital Employed($)'].apply(get_string_from_number)
try:
lastprice = finsoup['ais'].findAll('bg-quote', {'class': 'value'})[0].text
lastprice_time = finsoup['ais'].findAll('bg-quote', {'field': 'date'})[0].text
fiscal_year_note = finsoup['abs'].findAll('small', {'class': 'small'})[0].text
mrq_date = finsoup['qbs'].findAll('thead', {'class': 'table__header'})[0].text.split('\n')[-4]
report_date_note = mrq_date + ", " + fiscal_year_note
except IndexError:
raise IndexError("Data not found for Ticker: " + ticker)
return df, lastprice, lastprice_time, report_date_note
@cache_redis.memoize(timeout=TIMEOUT_12HR*2*7) # weekly update
def get_sector_data(sector):
"""
Get sector data from iexfinance API
"""
try:
# ONLY US-listed stocks in NYSE, NASDAQ, and other US market providers
stocks = [s for s in SectorCollection(sector, output_format = 'json').fetch() if 'primaryExchange' in s and ''.join(sorted(s['primaryExchange'].upper())).strip() in [''.join(sorted(e['name'].upper())).strip() for e in get_us_exchanges()]]
logger.info(f'\t{sector}\tSector Universe of US-listed:\t{len(stocks)}\tcompanies.')
# If we can't see its PE here, we're probably not interested in a stock. Omit it from batch queries.
stocks = [s for s in stocks if s['peRatio'] and s['peRatio']>0]
logger.info(f'\t{sector}\tPE>0:\t{len(stocks)}\tcompanies.')
# IEX doesn't like batch queries for more than 100 symbols at a time.
# We need to build our fundamentals info iteratively.
batch_idx = 0
batch_size = 100
adv_stats_api_urls = []
resp_dict = {}
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
while batch_idx < len(stocks):
symbol_batch = [s['symbol']
for s in stocks[batch_idx:batch_idx+batch_size]]
adv_stats_api_urls.append(os.environ.get('IEX_CLOUD_APIURL')
+ 'stock/market/batch?symbols=' + ','.join(symbol_batch) + '&types=advanced-stats&token='
+ os.environ.get('IEX_TOKEN'))
batch_idx += batch_size
# limit to 300 companies per sector for getting advanced-stats endpoint,
# TODO: improve this in future
for d in loop.run_until_complete(fetch_async(adv_stats_api_urls[:3], format = 'json')):
resp_dict.update(d)
logger.info(f'\t{sector}\tGot data for:\t{len(resp_dict)}\tcompanies.')
return resp_dict
except Exception as e:
logger.exception(e)
# We extend iexfinance a bit to support the sector collection endpoint.
class SectorCollection(_IEXBase):
def __init__(self, sector, **kwargs):
self.sector = sector
super(SectorCollection, self).__init__(**kwargs)
@property
def url(self):
return '/stock/market/collection/sector?collectionName={}'.format(self.sector)
async def fetch_async(urls, format = 'text'):
tasks = []
# try to use one client session
async with ClientSession() as session:
for url in urls:
if format == 'text':
task = asyncio.ensure_future(get_souped_text(session, url))
elif format == 'json':
task = asyncio.ensure_future(get_json_resp(session, url))
else:
raise ValueError('Invalid format for fetching URL: ' + format)
tasks.append(task)
# await response outside the for loop
resp_list = await asyncio.gather(*tasks)
return resp_list
async def get_souped_text(session, url):
# sleep(0.1) # throttle scraping
try:
async with session.get(url, timeout=15) as response:
resp = await response.read()
return BeautifulSoup(resp.decode('utf-8'), features="html.parser") # read in
except ClientResponseError as e:
logger.error(e.code)
except asyncio.TimeoutError:
logger.error("Timeout")
except Exception as e:
logger.exception(e)
async def get_json_resp(session, url):
async with session.get(url) as resp:
resp = await resp.json()
return resp
# async def get_stream_quote(ticker):
# async with sse_client.EventSource(
# f"{os.environ.get('IEX_CLOUD_APISSEURL')}tops?token={os.environ.get('IEX_TOKEN')}&symbols={ticker}"
# ) as event_source:
# try:
# async for event in event_source:
# logger.info(event)
# return event
# except ConnectionError as e:
# logger.exception(e)
def get_titles(souptext):
return souptext.findAll('td', {'class': 'overflow__cell fixed--column'})
def walk_row(titlerow): # use the fact that data-chart-data has the numeric values
return titlerow.findNextSiblings(attrs={'class': 'overflow__cell'})[-1].div.div['data-chart-data'].split(',')
def get_income_data(data_titles, data_lines):
def build_income_list(data_list):
if 'Sales' in title.text \
or 'Net Interest Inc' in title.text or 'Non-Interest Income' in title.text: # for Financial companies top-line
data_lines['revenue'].append(data_list)
if 'EPS (Diluted)' in title.text:
data_lines['eps'].append(data_list)
if 'Pretax Income' in title.text:
data_lines['pretaxincome'].append(data_list)
if 'Net Income' in title.text:
data_lines['netincome'].append(data_list)
if ' Interest Expense' in title.text:
data_lines['interestexpense'].append(data_list)
if 'Research & Development' in title.text:
data_lines['randd'].append(data_list)
if 'EBITDA' in title.text:
data_lines['ebitda'].append(data_list)
if 'Diluted Shares Outstanding' in title.text:
data_lines['shares'].append(data_list)
for title in data_titles['ais']:
if 'Growth' in title.text: # scale to %
build_income_list([get_string_from_number(float(d), True) if d else '-' for d in walk_row(title)])
else:
build_income_list([get_string_from_number(float(d)) if d else '-' for d in walk_row(title)])
for title in data_titles['qis']: # first convert to numbers, then sum last 4 of 5 qtrs for TTM data
qtr_data = [get_number_from_string(cell) for cell in walk_row(title)]
qtr_sum = sum(qtr_data[1:]) if all(v is not None for v in qtr_data[1:]) else None
if 'Sales Growth' in title.text \
or 'Net Interest Inc After Loan Loss Prov Growth' in title.text: # for Financial companies top-line
qtr_sum_str = get_string_from_number(get_number_from_string(data_lines['revenue'][-1][0])/get_number_from_string(data_lines['revenue'][0][-1]) - 1, True)
elif 'EPS (Diluted)' in title.text: # don't scale to 'M' or '%' for pershare
qtr_sum_str = f'{qtr_sum:.2f}' if qtr_sum else '-'
if 'Growth' in title.text: # get growth rate
qtr_sum_str = get_string_from_number(get_number_from_string(data_lines['eps'][-1][0])/get_number_from_string(data_lines['eps'][0][-1]) - 1, True)
elif 'Diluted Shares Outstanding' in title.text: # don't add the Shares Outstanding, return the last Quarter reported value
qtr_sum_str = get_string_from_number(qtr_data[-1]) if qtr_sum else '-'
else:
qtr_sum_str = get_string_from_number(qtr_sum) if qtr_sum else '-'
build_income_list([qtr_sum_str])
return data_lines
def get_balancesheet_data(data_titles, data_lines):
def build_balancesheet_list(data_list):
if 'Total Shareholders\' Equity' in title.text:
data_lines['equity'].append(data_list)
if 'Debt excl. Capital' in title.text:
data_lines['ltd'].append(data_list)
if 'Total Assets' in title.text:
data_lines['totalassets'].append(data_list)
if 'Intangible Assets' in title.text:
data_lines['intangibleassets'].append(data_list)
if 'Total Current Liabilities' in title.text:
data_lines['currentliab'].append(data_list)
if 'Cash & Short Term Investments' in title.text or 'Cash & Due from' in title.text:
data_lines['cash'].append(data_list)
for title in data_titles['abs']:
build_balancesheet_list([get_string_from_number(float(d)) if d else '-' for d in walk_row(title)])
for title in data_titles['qbs']:
mrq_cell = walk_row(title)[-1]
build_balancesheet_list([get_string_from_number(float(mrq_cell)) if mrq_cell else '-']) # only get MRQ
return data_lines
def get_cashflow_data(data_titles, data_lines):
def build_cashflow_list(data_list):
if 'Net Investing Cash Flow' in title.text:
data_lines['capex'].append(data_list)
if 'Free Cash Flow' in title.text:
data_lines['fcf'].append(data_list)
for title in data_titles['acf']:
build_cashflow_list([get_string_from_number(float(d)) if d else '-' for d in walk_row(title)])
for title in data_titles['qcf']: # first convert to numbers, then sum last 4 of 5 qtrs for TTM data
qtr_data = [get_number_from_string(cell) for cell in walk_row(title)]
qtr_sum_str = get_string_from_number(sum(qtr_data[1:])) if all(v is not None for v in qtr_data[1:]) else '-'
build_cashflow_list([qtr_sum_str])
return data_lines
def get_element(list, element):
try:
return list[element]
except:
return '-'
def get_number_from_string(str_value):
try:
if isinstance(str_value, str):
str_value = str_value.replace(',', '') # remove commas for formatting
if str_value[0] == '(': # negative number in parenthesis format
str_value = '-' + str_value[1:-1]
if str_value == '-' or str_value == '--':
return None
else:
try:
return float(str_value)
except ValueError:
units_dict = {'M': 1e6, 'B': 1e9, 'T': 1e12, '%': 0.01}
return float(str_value[:-1]) * units_dict[str_value[-1]]
else:
raise ValueError('Need a string input to convert to number!')
except Exception as e:
logger.exception(e)
return None
def get_string_from_number(num_value, ratio_to_percent=False):
if abs(num_value) > 1e12:
return '{:.2f}'.format(num_value/1e12) + 'T' if num_value >= 0 else '(' + '{:.2f}'.format(-num_value/1e12) + 'T)'
if abs(num_value) > 1e9:
return '{:.2f}'.format(num_value/1e9) + 'B' if num_value >= 0 else '(' + '{:.2f}'.format(-num_value/1e9) + 'B)'
if abs(num_value) > 1e6:
return '{:.2f}'.format(num_value/1e6) + 'M' if num_value >= 0 else '(' + '{:.2f}'.format(-num_value/1e6) + 'M)'
if ratio_to_percent:
return '{:.2f}'.format(num_value*100) + '%' if num_value >= 0 else '(' + '{:.2f}'.format(-num_value*100) + '%)'
return '{:.2f}'.format(num_value)
@cache.memoize(timeout=TIMEOUT_12HR*2*7) # weekly update
def get_yahoo_fin_values(ticker):
urlmain = 'https://finance.yahoo.com/quote/'+ticker+'/'
try:
s = BeautifulSoup(requests.get(urlmain).text, features="html.parser")
beta = float(s.findAll('td', {'class': 'Ta(end) Fw(600) Lh(14px)', 'data-test': 'BETA_5Y-value'})[0].text)
next_earnings_date = s.findAll('td', {'class': 'Ta(end) Fw(600) Lh(14px)', 'data-test': 'EARNINGS_DATE-value'})[0].text
return next_earnings_date, beta
except Exception as e:
logger.exception(e)
return 'N/A', []
@cache.memoize(timeout=TIMEOUT_12HR*2*7) # weekly update
def get_overview_fin_values(ticker):
urlmain = 'https://www.marketwatch.com/investing/stock/'+ticker
try:
s = BeautifulSoup(requests.get(urlmain).text, features="html.parser")
beta = float(s.findAll('div', {'class':'element element--list'})[0].findAll('li', {'class':'kv__item'})[6].findAll('span')[0].text)
next_earnings_date = '<-Check Yahoo Finance!->'
return next_earnings_date, beta
except Exception as e:
logger.exception(e)
return 'N/A', []
@cache.memoize(timeout=TIMEOUT_12HR*2) # daily update
def get_rates_fin_values():
urlmain = 'https://finance.yahoo.com/quote/^TNX' # Treasury Yield 10 Years
try:
s = BeautifulSoup(requests.get(urlmain).text, features="html.parser")
return float(s.findAll('fin-streamer', {'data-symbol':'^TNX'})[0].text)
except Exception as e:
logger.exception(e)
return 2
# %%
if __name__ == '__main__':
import cProfile
import pstats
pr = cProfile.Profile()
pr.enable()
df, lastprice, lastprice_time, report_date_note = get_financial_report('AAPL')
pr.disable()
pstats.Stats(pr).strip_dirs().sort_stats('time').print_stats(0.05) # Profile only Top 5% time spent