-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgnn_model.py
53 lines (37 loc) · 1.49 KB
/
gnn_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
class GCN(torch.nn.Module):
def __init__(self, num_node_features=48, num_classes=2, thr=0.5, use_resnet=False, final_all_adj_layer=False):
super().__init__()
self.use_resnet = use_resnet
# Resnet ouitputs 1000 features for these 32*32*3 crops.
if self.use_resnet:
self.resnet = torch.hub.load('pytorch/vision:v0.10.0', 'resnet18', pretrained=True)
num_node_features = 1000
self.conv1 = GCNConv(num_node_features, 16)
self.conv2 = GCNConv(16, 16)
self.conv3 = GCNConv(16, 16)
self.conv4 = GCNConv(16, 16)
self.fc1 = nn.Linear(16, 1)
self.sigmoid = nn.Sigmoid()
self.final_all_adj_layer = final_all_adj_layer
def forward(self, data):
x, edge_index = data.x, data.edge_index
if self.use_resnet:
x = self.resnet(torch.stack([x.view(3, 32, 32) for x in data.x]))
x = self.conv1(x, edge_index)
x = F.relu(x)
x = self.conv2(x, edge_index)
x = F.relu(x)
x = self.conv3(x, edge_index)
x = F.relu(x)
if self.final_all_adj_layer:
num_nodes = x.shape[0]
edge_index = torch.ones(num_nodes, num_nodes).nonzero().t().to(x.device)
x = self.conv4(x, edge_index)
x = self.fc1(x).flatten()
#res = F.log_softmax(x, dim=1)
res = self.sigmoid(x)
return res