Skip to content

Access Amazon's AWS Athena API via reticulate and AWS official Python boto3 module

Notifications You must be signed in to change notification settings

cloudyr/roto.athena

Repository files navigation

roto.athena

Perform and Manage 'Amazon' 'Athena' Queries

Description

This is a 'reticulated' wrapper for the 'Python' 'boto3' 'AWS' 'Athena' client library https://boto3.readthedocs.io/en/latest/reference/services/athena.html. It requires 'Python' version 3.5+ and an 'AWS' account. Tools are also provided to execute 'dplyr' chains asynchronously.

NOTE

This package requires Python >= 3.5 to be available and the boto3 Python module. The package author highly recommends setting RETICULATE_PYTHON=/usr/local/bin/python3 in your ~/.Renviron file to ensure R + reticulate will use the proper python version.

What’s Inside The Tin

The following functions are implemented:

  • create_named_query: Create a named query.
  • delete_named_query: Delete a named query.
  • get_named_query: Get Query Execution
  • get_named_queries: Get Query Execution (batch/multiple)
  • get_query_execution: Get Query Execution
  • get_query_executions: Get Query Executions (batch/multiple)
  • get_query_results: Get Query Results
  • list_named_queries: List Named Queries
  • list_query_executions: List Query Executions
  • start_query_execution: Start Query Execution
  • stop_query_execution: Stop Query Execution
  • collect_async: Collect Amazon Athena dplyr query results asynchronously

Installation

devtools::install_github("hrbrmstr/roto.athena")
# OR
devtools::install_git("git://gitlab.com/hrbrmstr/roto.athena")

Usage

library(roto.athena)
library(tidyverse)

# current verison
packageVersion("roto.athena")
## [1] '0.1.0'

Basic Usage

# see recent queries
x <- list_query_executions(profile = "personal")

head(x$QueryExecutionIds)
## [1] "25672eb3-418a-496d-b9c0-afe93b774009" "719dd084-f940-4cb4-931e-35688575bc6e" "0e6f6e17-4432-4332-9f0e-ee85ec70f1a0"
## [4] "92768c3f-eabc-4c72-b61e-244ee72e8810" "9b02fd64-3c1b-404c-bba0-a23d62ec28d0" "1ee48b6a-735b-4f66-b526-093047d07e78"

# get last 5 query executions
y <- get_query_executions(x$QueryExecutionIds[1:5], profile = "personal")

# only look at the ones that succeeded
filter(y$QueryExecutions, state == "SUCCEEDED") 
## # A tibble: 5 x 12
##   query_execution_… query  output_location encryption_conf… kms_key database state state_change_re… submitted completed
##   <chr>             <chr>  <chr>           <chr>            <chr>   <chr>    <chr> <chr>            <chr>     <chr>    
## 1 92768c3f-eabc-4c… SHOW … s3://aws-athen… <NA>             <NA>    sampledb SUCC… <NA>             2018-07-… 2018-07-…
## 2 0e6f6e17-4432-43… SHOW … s3://aws-athen… <NA>             <NA>    sampledb SUCC… <NA>             2018-07-… 2018-07-…
## 3 25672eb3-418a-49… "SELE… s3://aws-athen… <NA>             <NA>    sampledb SUCC… <NA>             2018-07-… 2018-07-…
## 4 719dd084-f940-4c… "SELE… s3://aws-athen… <NA>             <NA>    sampledb SUCC… <NA>             2018-07-… 2018-07-…
## 5 9b02fd64-3c1b-40… SHOW … s3://aws-athen… <NA>             <NA>    sampledb SUCC… <NA>             2018-07-… 2018-07-…
## # ... with 2 more variables: execution_time_ms <int>, bytes_scanned <int>

# fire off another one!
start_query_execution(
  query = "SELECT * FROM elb_logs LIMIT 100",
  database = "sampledb",
  output_location = "s3://aws-athena-query-results-redacted",
  profile = "personal"
) -> sqe
# see the status
get_query_execution(sqe, profile = "personal") %>% 
  glimpse()
## Observations: 1
## Variables: 10
## $ query_execution_id  <chr> "0b6d4b0c-a2e8-4896-aa78-679a5ff2ba7d"
## $ query               <chr> "SELECT * FROM elb_logs LIMIT 100"
## $ output_location     <chr> "s3://aws-athena-query-results-redacted/0b6d4b0c-a2e8-4896-aa78-679a5ff2ba7d.csv"
## $ database            <chr> "sampledb"
## $ state               <chr> "SUCCEEDED"
## $ state_change_reason <chr> NA
## $ submitted           <chr> "2018-07-20 09:43:56.993000-04:00"
## $ completed           <chr> "2018-07-20 09:43:58.844000-04:00"
## $ execution_time_ms   <int> 1610
## $ bytes_scanned       <int> 288722

# get the results
res <- get_query_results(sqe, profile = "personal")

res
## # A tibble: 100 x 16
##    timestamp   elbname requestip  requestport backendip  backendport requestprocessi… backendprocessi… clientresponset…
##    <chr>       <chr>   <chr>            <int> <chr>            <int>            <dbl>            <dbl>            <dbl>
##  1 2014-09-26… lb-demo 245.74.18…       27026 253.8.255…        8888        0.0000780           0.0365        0.0000470
##  2 2014-09-26… lb-demo 249.90.14…       20670 253.25.5.…        8888        0.0000940           0.0213        0.0000480
##  3 2014-09-26… lb-demo 251.164.1…       27026 248.118.6…        8888        0.000104            0.0391        0.0000550
##  4 2014-09-26… lb-demo 245.163.9…       20670 253.25.5.…         443        0.000114            0.0532        0.0000660
##  5 2014-09-26… lb-demo 252.248.6…       27026 250.238.2…        8888        0.0000890           0.0401        0.0000450
##  6 2014-09-26… lb-demo 252.222.3…       20670 249.90.14…        8888        0.0000910           0.0386        0.0000410
##  7 2014-09-26… lb-demo 251.138.2…       27026 253.25.5.…        8899        0.0000920           0.0485        0.0000690
##  8 2014-09-26… lb-demo 243.35.14…       20670 242.76.95…        8888        0.000115            0.0409        0.0000710
##  9 2014-09-26… lb-demo 251.130.1…       27026 248.81.19…          80        0.0000900           0.0405        0.0000550
## 10 2014-09-26… lb-demo 251.130.1…       20670 251.214.2…        8888        0.000104            0.0403        0.0000520
## # ... with 90 more rows, and 7 more variables: elbresponsecode <chr>, backendresponsecode <chr>, receivedbytes <S3:
## #   integer64>, sentbytes <S3: integer64>, requestverb <chr>, url <chr>, protocol <chr>

Async dplyr calls

library(odbc)
library(DBI)

DBI::dbConnect(
  odbc::odbc(), 
  driver = "/Library/simba/athenaodbc/lib/libathenaodbc_sbu.dylib", 
  Schema = "sampledb",
  AwsRegion = "us-east-1",
  AwsProfile = "personal",
  AuthenticationType = "IAM Profile",
  S3OutputLocation = "s3://aws-athena-query-results-redacted"
) -> con

elb_logs <- tbl(con, "elb_logs")

mutate(elb_logs, tsday = substr(timestamp, 1, 10)) %>% 
  filter(tsday == "2014-09-29") %>%
  select(requestip, requestprocessingtime) %>% 
  collect_async(
    database = "sampledb", 
    output_location = "s3://aws-athena-query-results-redacted",
    profile_name = "personal"
  ) -> id
get_query_execution(id, profile = "personal") %>% 
  glimpse()
## Observations: 1
## Variables: 10
## $ query_execution_id  <chr> "2c54e526-8dda-4250-bda0-35853603eda9"
## $ query               <chr> "SELECT \"requestip\", \"requestprocessingtime\"\nFROM (SELECT *\nFROM (SELECT \"timest...
## $ output_location     <chr> "s3://aws-athena-query-results-redacted/2c54e526-8dda-4250-bda0-35853603eda9.csv"
## $ database            <chr> "sampledb"
## $ state               <chr> "SUCCEEDED"
## $ state_change_reason <chr> NA
## $ submitted           <chr> "2018-07-20 09:44:03.982000-04:00"
## $ completed           <chr> "2018-07-20 09:44:05.239000-04:00"
## $ execution_time_ms   <int> 1147
## $ bytes_scanned       <int> 846383

get_query_results(id, profile = "personal")
## # A tibble: 774 x 2
##    requestip       requestprocessingtime
##    <chr>                           <dbl>
##  1 240.193.27.4                0.0000730
##  2 240.154.14.237              0.0000920
##  3 245.155.219.217             0.000120 
##  4 255.100.99.136              0.000104 
##  5 246.62.216.54               0.0000860
##  6 254.103.46.154              0.0000600
##  7 240.147.146.84              0.000101 
##  8 251.69.22.230               0.0000720
##  9 242.190.162.43              0.000106 
## 10 248.228.92.236              0.000115 
## # ... with 764 more rows

About

Access Amazon's AWS Athena API via reticulate and AWS official Python boto3 module

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages