-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathcreate_external_datasets.py
561 lines (493 loc) · 26.5 KB
/
create_external_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
import argparse
import itertools
import logging
import os
import random
import re
import traceback
import datetime
from collections import Counter
from pathlib import Path
import math
from scipy import spatial
from scipy.io.arff import loadarff
from sklearn.linear_model import LogisticRegression
import pandas as pd
import numpy as np
from sklearn.model_selection import ParameterGrid, train_test_split
import datasets
from datasets import DatasetDict, Dataset, concatenate_datasets, load_dataset
from transformers import (
set_seed, AutoTokenizer, AutoModelForCausalLM
)
from transformers import BloomTokenizerFast, BloomForCausalLM, AutoModelForSeq2SeqLM
from helper.note_generator import NoteGenerator
from helper.note_template import NoteTemplate
from helper.external_datasets_variables import *
from helper.preprocess import preprocess
logger = logging.getLogger(__name__)
cat_idx_dict = {
"car": [0,1,2,3,4,5],
"diabetes": [],
"heart": [1,2,6,8,10],
"income": [1,2,3,4,5,6,7,11],
"creditg": [0,2,3,4,5,6,8,9,11,13,14,16,18,19],
"blood": [],
"bank": [1,2,3,4,6,7,8,10,15],
"jungle": [],
"calhousing": [],
}
bin_num = 10
def main():
args = parse_args()
set_seed(args.seed)
logging.basicConfig(level=logging.INFO)
# Configuration
data_dir = Path("/root/TabLLM/datasets")
data_dir = data_dir / args.dataset
temp_output = 'dataset-generation-' + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
output_dir = Path("/root/TabLLM/datasets_serialized") / temp_output
if not args.debug:
os.mkdir(output_dir)
logger.info(f"Generate dataset {args.dataset}.")
if not args.list and args.permuted:
raise ValueError("Permuted note is not supported.")
dataset_name = args.dataset + \
('_list' if args.list else '') + \
('_permuted' if args.permuted else '') + \
('_values' if args.values else '') + \
('_shuffled' if args.shuffled else '') + \
('_importance' if args.feature_importance else '')
dataset = load_train_validation_test(args.dataset, data_dir)
if args.debug:
dataset['train'] = dataset['train'].sample(min(10, len(dataset['train'])))
dataset['validation'] = dataset['validation'].sample(min(5, len(dataset['validation'])))
dataset['test'] = dataset['test'].sample(min(5, len(dataset['test'])))
# logger.info(f" Cohort size: {len(dataset['train'])}, {len(dataset['validation'])}, {len(dataset['test'])}")
if args.feature_importance:
# Simply combine all examples and create a list of features as covariates of the linear model.
dataset['train'] = pd.concat([dataset[k] for k in dataset.keys()])
dataset['validation'] = dataset['validation'].sample(0)
dataset['test'] = dataset['train'].sample(0)
# For each of them generate all feature values
output_linear_classifier_features(dataset['train'], output_dir, args.dataset)
# template, template_config = None, None
template = eval('template_' + dataset_name)
template_config = eval('template_config_' + dataset_name)
note_generator = NoteTemplate(template, **template_config)
# External datasets are now split later
dataset = pd.concat(list(dataset.values()), ignore_index=True)
# Shuffled: shuffle each feature column separately
if args.shuffled:
# np.random.seed(42)
def derange(n):
orig = np.arange(n)
derangement = orig
while np.any(orig == derangement):
derangement = np.random.permutation(orig)
return derangement
def shuffle_dataset(dataset):
cat_idx = cat_idx_dict[args.dataset]
derangement_dict = {}
for column_idx, c in enumerate(dataset.columns):
if column_idx in cat_idx and c != 'label':
derangement_dict[c] = {}
value_set = list(set(dataset[c].values))
derangement = derange(len(value_set))
derangement_dict[c] = {value: value_set[derangement[i]] for i, value in enumerate(value_set)}
dataset[c] = [derangement_dict[c][value] for value in dataset[c]]
if column_idx not in cat_idx and c!= 'label':
value_list = dataset[c].values
ret_value_list = []
num_values = len(value_list)
sorted_value_list = sorted(list(value_list))
derangement = derange(bin_num)
bin_idx_intervals = []
bin_idx_endpoints = []
factor = num_values / bin_num
for bin_idx in range(bin_num):
lower_idx, upper_idx = math.floor(bin_idx * factor), math.floor((bin_idx + 1) * factor)
bin_idx_intervals.append([lower_idx, upper_idx])
bin_idx_endpoints.append([sorted_value_list[lower_idx], sorted_value_list[upper_idx-1]])
for value in value_list:
for bin_idx, (lower_value, upper_value) in enumerate(bin_idx_endpoints):
if value >= lower_value and value <= upper_value:
mapped_bin_lower_idx, mapped_bin_upper_idx = bin_idx_intervals[derangement[bin_idx]]
sampled_bin_values = sorted_value_list[mapped_bin_lower_idx : mapped_bin_upper_idx]
ret_value_list.append(random.choice(sampled_bin_values))
break
dataset[c] = ret_value_list
return dataset
dataset = shuffle_dataset(dataset)
notes = [NoteGenerator.clean_note(note_generator.substitute(r)) for _, r in dataset.iterrows()]
old_size_notes = len(notes)
start = 0 # 25000
end = len(notes)
notes = notes[start:end]
dataset = dataset.iloc[start:end]
print(f"Only consider dataset range between {start} and {end} (total: {old_size_notes})")
# Apply modifications based on the list format
# Table-To-Text
if args.tabletotext or args.t0serialization:
if args.tabletotext:
tokenizer = AutoTokenizer.from_pretrained("Narrativaai/bloom-560m-finetuned-totto-table-to-text")
model = AutoModelForCausalLM.from_pretrained("Narrativaai/bloom-560m-finetuned-totto-table-to-text").to("cuda")
else:
tokenizer = AutoTokenizer.from_pretrained('bigscience/T0')
model = AutoModelForSeq2SeqLM.from_pretrained('bigscience/T0').to("cuda")
def serialize(ex):
inputs = tokenizer(ex['text'], return_tensors='pt', padding=True)
input_ids = inputs.input_ids.to("cuda")
attention_mask = inputs.attention_mask.to("cuda")
output = model.generate(input_ids, attention_mask=attention_mask, max_length=len(input_ids[0]) + 50,
eos_token_id=tokenizer.eos_token_id)
ex['out'] = tokenizer.decode(output[0], skip_special_tokens=False)
return ex
if args.tabletotext:
num_features = len(dataset.columns) - 1
def write_into_table(name, value):
example = {}
example['table_page_title'] = ''
example['table_section_title'] = ''
example['table'] = [[{'column_span': 1, 'is_header': True, 'row_span': 1, 'value': name}],
[{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': value}]]
example['highlighted_cells'] = [[0, 0], [1, 0]]
return example
def table_to_text(note):
re_name_value = re.compile(r"^- (.*):([^:]*)$", re.MULTILINE)
name_values = re_name_value.findall(note)
examples = [write_into_table(x[0].strip(), x[1].strip()) for x in name_values]
return [preprocess(e)['linearized_table'] for e in examples]
# notes = notes[0:10]
old_size = len(notes)
notes = Dataset.from_dict({'text': list(itertools.chain(*[table_to_text(n) for n in notes]))})
assert notes.shape[0] == num_features * old_size
notes = notes.map(serialize)
# Debug
notes.save_to_disk(output_dir / (dataset_name + '_debug'))
notes = [(((ex['out'].split('>')[-2]).split('<')[0]).replace('\n', ' ')).strip() for ex in notes]
notes = [' '.join(l) for l in [notes[x:x+num_features] for x in range(0, len(notes), num_features)]]
if args.t0serialization:
def entry_to_text(note):
prefix = 'Write this information as a sentence: '
suffix = '. \n'
re_name_value = re.compile(r"^- (.*):([^:]*)$", re.MULTILINE)
name_values = re_name_value.findall(note)
lines = note.splitlines()[0:len(name_values)]
lines = [l[2:] for l in lines]
chunks = [(prefix + ', '.join(lines[k:k + 2]) + suffix) for k in range(0, len(lines), 2)]
return chunks
old_size = len(notes)
num_chunks = int(((len(dataset.columns) - 1) / 2.) + 0.5)
# notes = notes[0:10]
notes = Dataset.from_dict({'text': list(itertools.chain(*[entry_to_text(n) for n in notes]))})
assert notes.shape[0] == old_size * num_chunks
notes = notes.map(serialize)
# Debug
notes.save_to_disk(output_dir / (dataset_name + '_debug'))
notes = [ex['out'][6:-4] for ex in notes]
notes = [' '.join(l) for l in [notes[x:x + num_chunks] for x in range(0, len(notes), num_chunks)]]
for i in range(0, min(10, len(notes))):
print('----')
print(notes[i])
dataset = Dataset.from_dict({'note': notes, 'label': dataset['label'].to_list()})
if not args.debug:
logger.info(f"Store generated datasets to {output_dir}/{dataset_name}")
logger.info(f"\tn={len(dataset)}, feats={dataset.num_columns}, labels={dict(Counter(dataset['label']))}")
dataset.save_to_disk(output_dir / dataset_name)
def load_train_validation_test(dataset_name, data_dir):
# Load existing data, put into train, validation, test and create label
def train_validation_test_split(data):
# Don't want to shuffle bc done later with right seed to make it identical with external evaluation
data_train, data_test = train_test_split(data, test_size=0.20, shuffle=False)
data_valid, data_test = train_test_split(data_test, test_size=0.50, shuffle=False)
return data_train, data_valid, data_test
def byte_to_string_columns(data):
for col, dtype in data.dtypes.items():
if dtype == object: # Only process byte object columns.
data[col] = data[col].apply(lambda x: x.decode("utf-8"))
return data
if dataset_name == "creditg":
dataset = pd.DataFrame(loadarff(data_dir / 'dataset_31_credit-g.arff')[0])
dataset = byte_to_string_columns(dataset)
dataset.rename(columns={'class': 'label'}, inplace=True)
dataset['label'] = dataset['label'] == 'good'
dataset_train, dataset_valid, dataset_test = train_validation_test_split(dataset)
elif dataset_name == "blood":
columns = {'V1': 'recency', 'V2': 'frequency', 'V3': 'monetary', 'V4': 'time', 'Class': 'label'}
dataset = pd.DataFrame(loadarff(data_dir / 'php0iVrYT.arff')[0])
dataset = byte_to_string_columns(dataset)
dataset.rename(columns=columns, inplace=True)
dataset['label'] = dataset['label'] == '2'
dataset_train, dataset_valid, dataset_test = train_validation_test_split(dataset)
elif dataset_name == "bank":
columns = ['age', 'job', 'marital', 'education', 'default', 'balance', 'housing', 'loan', 'contact', 'day',
'month', 'duration', 'campaign', 'pdays', 'previous', 'poutcome']
columns = {'V' + str(i + 1): v for i, v in enumerate(columns)}
dataset = pd.DataFrame(loadarff(data_dir / 'phpkIxskf.arff')[0])
dataset = byte_to_string_columns(dataset)
dataset.rename(columns=columns, inplace=True)
dataset.rename(columns={'Class': 'label'}, inplace=True)
dataset['label'] = dataset['label'] == '2'
dataset_train, dataset_valid, dataset_test = train_validation_test_split(dataset)
elif dataset_name == "jungle":
dataset = pd.DataFrame(loadarff(data_dir / 'jungle_chess_2pcs_raw_endgame_complete.arff')[0])
dataset = byte_to_string_columns(dataset)
dataset.rename(columns={'class': 'label'}, inplace=True)
dataset['label'] = dataset['label'] == 'w' # Does white win?
dataset_train, dataset_valid, dataset_test = train_validation_test_split(dataset)
elif dataset_name == "calhousing":
dataset = pd.DataFrame(loadarff(data_dir / 'houses.arff')[0])
dataset = byte_to_string_columns(dataset)
dataset.rename(columns={'median_house_value': 'label'}, inplace=True)
# Make binary task by labelling upper half as true
median_price = dataset['label'].median()
dataset['label'] = dataset['label'] > median_price
dataset_train, dataset_valid, dataset_test = train_validation_test_split(dataset)
elif dataset_name == "income":
columns = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation',
'relationship', 'race', 'sex', 'capital_gain', 'capital_loss', 'hours_per_week',
'native_country', 'label']
def strip_string_columns(df):
df[df.select_dtypes(['object']).columns] = df.select_dtypes(['object']).apply(lambda x: x.str.strip())
dataset_train = pd.read_csv(data_dir / 'adult.data', names=columns, na_values=['?', ' ?'])
dataset_train = dataset_train.drop(columns=['fnlwgt', 'education_num'])
original_size = len(dataset_train)
strip_string_columns(dataset_train)
# Multiply all dollar columns by two to adjust for inflation
# dataset_train[['capital_gain', 'capital_loss']] = (1.79 * dataset_train[['capital_gain', 'capital_loss']]).astype(int)
dataset_train['label'] = dataset_train['label'] == '>50K'
dataset_test = pd.read_csv(data_dir / 'adult.test', names=columns, na_values=['?', ' ?'])
dataset_test = dataset_test.drop(columns=['fnlwgt', 'education_num'])
strip_string_columns(dataset_test)
# Note label string in test set contains full stop
# dataset_test[['capital_gain', 'capital_loss']] = (1.79 * dataset_test[['capital_gain', 'capital_loss']]).astype(int)
dataset_test['label'] = dataset_test['label'] == '>50K.'
dataset_train, dataset_valid = train_test_split(dataset_train, test_size=0.20, random_state=1)
dataset = dataset_train
assert len(dataset_train) + len(dataset_valid) == original_size
elif dataset_name == "car":
columns = ['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety_dict', 'label']
dataset = pd.read_csv(data_dir / 'car.data', names=columns)
original_size = len(dataset)
label_dict = {'unacc': 0, 'acc': 1, 'good': 2, 'vgood': 3}
dataset['label'] = dataset['label'].replace(label_dict)
dataset_train, dataset_valid, dataset_test = train_validation_test_split(dataset)
assert len(dataset_train) + len(dataset_valid) + len(dataset_test) == original_size
elif dataset_name == "voting":
columns = ['label', 'handicapped_infants', 'water_project_cost_sharing', 'adoption_of_the_budget_resolution',
'physician_fee_freeze', 'el_salvador_aid', 'religious_groups_in_schools', 'anti_satellite_test_ban',
'aid_to_nicaraguan_contras', 'mx_missile', 'immigration', 'synfuels_corporation_cutback',
'education_spending', 'superfund_right_to_sue', 'crime', 'duty_free_exports',
'export_administration_act_south_africa']
dataset = pd.read_csv(data_dir / 'house-votes-84.data', names=columns, na_values=['?'])
original_size = len(dataset)
dataset['label'] = np.where(dataset['label'] == 'democrat', 1, 0)
dataset_train, dataset_valid, dataset_test = train_validation_test_split(dataset)
assert len(dataset_train) + len(dataset_valid) + len(dataset_test) == original_size
elif dataset_name == "wine":
columns = ['fixed_acidity', 'volatile_acidity', 'citric_acid', 'residual_sugar', 'chlorides',
'free_sulfur_dioxide', 'total_sulfur_dioxide', 'density', 'pH', 'sulphates', 'alcohol', 'quality']
dataset = pd.read_csv(data_dir / 'winequality-red.csv', names=columns, skiprows=[0])
original_size = len(dataset)
# Adopt grouping from: https://www.kaggle.com/code/vishalyo990/prediction-of-quality-of-wine
bins = (2, 6.5, 8)
dataset['quality'] = pd.cut(dataset['quality'], bins=bins, labels=[0, 1]).astype(int) # bad, good
dataset = dataset.rename(columns={'quality': 'label'})
dataset_train, dataset_valid, dataset_test = train_validation_test_split(dataset)
assert len(dataset_train) + len(dataset_valid) + len(dataset_test) == original_size
elif dataset_name == "titanic":
# Only use training set since no labels for test set
dataset = pd.read_csv(data_dir / 'train.csv')
original_size = len(dataset)
dataset = dataset.rename(columns={'Survived': 'label'})
dataset_train, dataset_valid, dataset_test = train_validation_test_split(dataset)
assert len(dataset_train) + len(dataset_valid) + len(dataset_test) == original_size
elif dataset_name == "heart":
dataset = pd.read_csv(data_dir / 'heart.csv')
original_size = len(dataset)
dataset = dataset.rename(columns={'HeartDisease': 'label'})
dataset_train, dataset_valid, dataset_test = train_validation_test_split(dataset)
assert len(dataset_train) + len(dataset_valid) + len(dataset_test) == original_size
elif dataset_name == "diabetes":
dataset = pd.read_csv(data_dir / 'diabetes.csv')
original_size = len(dataset)
dataset = dataset.rename(columns={'Outcome': 'label'})
dataset_train, dataset_valid, dataset_test = train_validation_test_split(dataset)
assert len(dataset_train) + len(dataset_valid) + len(dataset_test) == original_size
else:
raise ValueError("Dataset not found")
# For final experiments, ensure correct numbers of features for each dataset
dataset_specs = {
'income': 13,
'car': 7,
'heart': 12,
'diabetes': 9,
'creditg': 21,
'blood': 5,
'bank': 17,
'jungle': 7,
'wine': 12,
'calhousing': 9
}
assert dataset_name in dataset_specs.keys() and len(dataset.columns) == dataset_specs[dataset_name]
dataset = {"train": dataset_train, "validation": dataset_valid, "test": dataset_test}
return dataset
def output_linear_classifier_features(examples, output_dir, dataset):
def remove_constants(data):
return data[[c for c in data if data[c].nunique() > 1]]
# Normalize numerical variables analogously to LR, copied from fitted scaler in evaluate_external_dataset (seed 42).
scalings = {
'income': {'age': [38.66194047, 13.70079038], 'capital_gain': [1092.03493461, 7514.89341966],
'capital_loss': [87.05228675, 401.7001878], 'hours_per_week': [40.45123231, 12.43397048]},
'car': {},
'heart': {'Age': [53.63760218, 9.38893213], 'RestingBP': [132.09264305, 18.09209337],
'Cholesterol': [201.70844687, 107.50566557], 'FastingBS': [0.23160763, 0.42185962],
'MaxHR': [136.59945504, 25.12828773], 'Oldpeak': [0.92711172, 1.06128969]},
'diabetes': {'Pregnancies': [3.68403909, 3.28025968], 'Glucose': [120.41042345, 32.63939221],
'BloodPressure': [68.75081433, 19.83518715], 'SkinThickness': [20.22638436, 15.68020872],
'Insulin': [79.43485342, 114.8289827], 'BMI': [31.77654723, 8.02507088],
'DiabetesPedigreeFunction': [0.47113192, 0.33090205], 'Age': [32.90879479, 11.66936554]}
}
scaling = scalings[dataset]
def normalize_examples(data):
for c in scaling.keys():
data[c] = (data[c] - scaling[c][0]) / scaling[c][1]
return data
examples_dummies = remove_constants(pd.get_dummies(examples, dummy_na=True))
if dataset == 'income':
assert len(examples_dummies.columns) == 107
# Also write out weighted version for linear explanation model
examples_dummies = normalize_examples(examples_dummies)
examples_dummies.to_pickle(output_dir / (dataset + '_lr_examples.p'))
# Might be necessary for income
# examples_dummies = remove_constants(pd.get_dummies(examples, dummy_na=True))
# Sample examples for debugging
# index_samples = np.random.choice(examples.index, min(200, len(examples)))
# examples = examples.loc[index_samples]
# examples_dummies = examples_dummies.loc[index_samples]
def create_perturbed_income_examples(examples, output_dir):
num_perturbed_examples_per_example = 20
prob_feature_perturbed = 2. / 12 # on average two features perturbed
feature_values = {
# Use max values for numerical features in training set with seed 42 (evaluate_external_dataset).
'age': 99,
'workclass': list(workclass_dict.keys()),
'education': list(education_dict.keys()),
'marital_status': ['Married-civ-spouse', 'Divorced', 'Never-married', 'Separated', 'Widowed',
'Married-spouse-absent', 'Married-AF-spouse'],
'occupation': list(occupation_dict.keys()),
'relationship': list(relationship_dict.keys()),
'race': ['White', 'Asian-Pac-Islander', 'Amer-Indian-Eskimo', 'Other', 'Black'],
'sex': ['Male', 'Female'],
'capital_gain': 9999,
'capital_loss': 4356,
'hours_per_week': 99,
'native_country': ['United-States', 'Cambodia', 'England', 'Puerto-Rico', 'Canada', 'Germany',
'Outlying-US(Guam-USVI-etc)', 'India', 'Japan', 'Greece', 'South', 'China', 'Cuba', 'Iran',
'Honduras', 'Philippines', 'Italy', 'Poland', 'Jamaica', 'Vietnam', 'Mexico', 'Portugal',
'Ireland', 'France', 'Dominican-Republic', 'Laos', 'Ecuador', 'Taiwan', 'Haiti', 'Columbia',
'Hungary', 'Guatemala', 'Nicaragua', 'Scotland', 'Thailand', 'Yugoslavia', 'El-Salvador',
'Trinadad&Tobago', 'Peru', 'Hong', 'Holand-Netherlands']
}
def remove_constants(data):
return data[[c for c in data if data[c].nunique() > 1]]
examples_dummies = remove_constants(pd.get_dummies(examples, dummy_na=True))
# Sample examples for debugging
# index_samples = np.random.choice(examples.index, min(200, len(examples)))
# examples = examples.loc[index_samples]
# examples_dummies = examples_dummies.loc[index_samples]
assert len(examples_dummies.columns) == 106
# Normalize numerical variables analogously to LR, copied from fitted scaler in evaluate_external_dataset (seed 42).
scaling = {
'age': [38.66194047, 13.70079038],
'capital_gain': [1092.03493461, 7514.89341966],
'capital_loss': [87.05228675, 401.7001878],
'hours_per_week': [40.45123231, 12.43397048]
}
def normalize_examples(data):
for c in scaling.keys():
data[c] = (data[c] - scaling[c][0]) / scaling[c][1]
return data
example_variants = examples.sample(0)
for idx, ex in examples.iterrows():
for p in range(0, num_perturbed_examples_per_example):
perturbed_feature_mask = np.random.uniform(0, 1, 12) < prob_feature_perturbed
example_copy = ex.copy()
for f, feat in enumerate(list(feature_values.keys())):
if perturbed_feature_mask[f]:
# Perturb this feature
if isinstance(feature_values[feat], int):
example_copy[feat] = int(random.uniform(0, feature_values[feat]))
else:
example_copy[feat] = feature_values[feat][int(random.uniform(0, len(feature_values[feat])))]
# Store perturbed version for LLM inference
example_variants = example_variants.append(example_copy, ignore_index=True)
# Also write out weighted version for linear explanation model
example_variants_dummies = pd.get_dummies(example_variants, dummy_na=True)
for column in [c for c in examples_dummies.columns if c not in example_variants_dummies.columns]:
example_variants_dummies[column] = 0
example_variants_dummies = example_variants_dummies[examples_dummies.columns]
examples_dummies = normalize_examples(examples_dummies)
example_variants_dummies = normalize_examples(example_variants_dummies)
counter = 0
weights = []
for idx, ex in examples_dummies.iterrows():
for p in range(0, num_perturbed_examples_per_example):
ex_original = [ex[c] for c in ex.index if c != 'label']
ex_perturbed = example_variants_dummies.iloc[counter]
ex_perturbed = [ex_perturbed[c] for c in ex_perturbed.index if c != 'label']
weights.append(1 - spatial.distance.cosine(ex_original, ex_perturbed))
counter += 1
example_variants_dummies['weight'] = weights
assert counter == example_variants_dummies.shape[0] and counter == example_variants.shape[0]
print(f"Created {counter} perturbed examples.")
example_variants_dummies.to_pickle(output_dir / 'weighted_perturbed_examples.p')
return example_variants
def parse_args():
parser = argparse.ArgumentParser(description="Create note dataset from cohort.")
parser.add_argument(
"--debug",
action="store_true",
)
parser.add_argument(
"--seed",
type=int,
default=1,
)
parser.add_argument(
"--dataset",
type=str
)
parser.add_argument(
"--list",
action="store_true",
)
parser.add_argument(
"--tabletotext",
action="store_true",
)
parser.add_argument(
"--t0serialization",
action="store_true",
)
parser.add_argument(
"--permuted",
action="store_true",
)
parser.add_argument(
"--values",
action="store_true",
)
parser.add_argument(
"--shuffled",
action="store_true",
)
parser.add_argument(
"--feature_importance",
action="store_true",
)
args = parser.parse_args()
return args
if __name__ == '__main__':
main()