forked from chloeprodhomme/Marine-Heatwaves
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfunction_read.py
727 lines (590 loc) · 26.1 KB
/
function_read.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
#!/usr/bin/env python
# Read data from an opendap server
import netCDF4
from cdo import *
import requests
import numpy as np
import numpy.ma as ma
from datetime import date, datetime, timedelta
from dateutil.relativedelta import relativedelta
from function_read import *
cdo = Cdo()
import math
from glob import glob
from netCDF4 import num2date, date2num
def lon_index(longitude, lon_bnds):
#if longitude are in -180 move to 0 - 360
lon_bnds=np.array(lon_bnds)
lons=np.array(longitude, copy=True)
#print('lons : ', lons)
#print True in list(lons<0)
if True in list(lons<0):
lons[lons<0]=lons[lons<0]+360
#if indices in -180, 180 move to 0 -360
if True in list(lon_bnds<0):
lon_bnds[lon_bnds<0]=lon_bnds[lon_bnds<0]+360
#if
#check if box is over separation (most of the time greenwitch pero sometimes longitude can be splitted somewhere else)
#not done.... Problem for grid_T
if lon_bnds[0]>lon_bnds[1]-1:
#return a list with index before greenwitch and indexes after
#print('Details : ')
#print('1 : ', np.where((lons >= lon_bnds[0]))[0])
#print('2 : ', np.where((lons <= lon_bnds[1]))[0])
lon_inds = [np.where((lons >= lon_bnds[0]))[0] , np.where((lons < lon_bnds[1]))[0]]
#print(lon_inds)
if list(lon_inds[1])==[]:
lon_inds=[lon_inds[0]]
if list(lon_inds[0])==[]:
lon_inds=[lon_inds[1]]
else:
lon_inds = [np.where((lons >= lon_bnds[0]) & (lons <= lon_bnds[1]))[0]]
#print('lon_inds : ', lon_inds)
return(lon_inds)
def lonlat_index(latitude, longitude, lat_bnds, lon_bnds):
#handle 2D latitude array
if len(latitude.shape)==2:
lat1D=np.array(latitude[:,0], copy=True)
else:
lat1D=np.array(latitude, copy=True)
#print lats
#print lat_bnds
#print np.where((lats >= lat_bnds[0]) & (lats <= lat_bnds[1]))[0]
lat_inds = np.where((lat1D >= lat_bnds[0]) & (lat1D <= lat_bnds[1]))[0]
#handle 2D longitude array (we base the longitude selection on the center of the latitude box)
if len(longitude.shape)==2:
centerlat=lat_inds[len(lat_inds)//2]
#print(lat_inds[len(lat_inds)/2])
lon1D=np.array(longitude[centerlat,:], copy=True)
#print lons
else:
lon1D=np.array(longitude, copy=True)
#print('lon1D : ', lon1D)
lon_inds = lon_index(lon1D, lon_bnds)
#print(lon_inds)
return(lat1D, lon1D, lat_inds, lon_inds)
def earth_radius(lat):
'''
calculate radius of Earth assuming oblate spheroid defined by WGS84
Input
---------
lat: vector or latitudes in degrees
Output
----------
r: vector of radius in meters
Notes
-----------
WGS84: https://earth-info.nga.mil/GandG/publications/tr8350.2/tr8350.2-a/Chapter%203.pdf
'''
from numpy import deg2rad, sin, cos
# define oblate spheroid from WGS84
a = 6378137
b = 6356752.3142
e2 = 1 - (b**2/a**2)
# convert from geodecic to geocentric
# see equation 3-110 in WGS84
lat = deg2rad(lat)
lat_gc = np.arctan( (1-e2)*np.tan(lat) )
# radius equation
# see equation 3-107 in WGS84
r = ((a * (1 - e2)**0.5)/(1 - (e2 * np.cos(lat_gc)**2))**0.5)
return r
def area_av(array, pos_lat, pos_lon, lats, lons, opt="mean", weightcalc=True, weights2D=None):
lons[lons>180]=lons[lons>180]-360
dim=array.shape
if weightcalc:
weights2D = area_grid(lats, lons)
#weights=np.swapaxes(extend_table(area_grid(lats, lons), np.delete(np.delete(dim, pos_lon), pos_lat), len(dim)-1, pos_lat))
weights=extend_table(weights2D, np.delete(np.delete(dim, pos_lon), pos_lat))
#plt.imshow(area_grid(lats, lons))
weights=np.ma.array(weights, mask=array.mask)
#print(area_grid(lats, lons).shape)
#print(array.shape)
#print(weights.shape)
if opt=="mean":
sumweigth=np.ma.sum(np.ma.sum(weights, axis=pos_lon),axis=pos_lat)
array_av = np.ma.sum(np.ma.sum(weights*array, axis=pos_lon),axis=pos_lat)/sumweigth
if opt=="sum":
array_av = np.ma.sum(np.ma.sum(weights*array, axis=pos_lon),axis=pos_lat)
return(array_av)
def area_grid(lat, lon):
"""
Calculate the area of each grid cell
Area is in square meters
Input
-----------
lat: vector of latitude in degrees
lon: vector of longitude in degrees
Output
-----------
area: grid-cell area in square-meters with dimensions, [lat,lon]
Notes
-----------
Based on the function in
https://github.com/chadagreene/CDT/blob/master/cdt/cdtarea.m
"""
from numpy import meshgrid, abs, deg2rad, rad2deg, gradient, cos, sin
from xarray import DataArray
lon[lon>180]=lon[lon>180]-360
xlon, ylat = meshgrid(lon, lat)
#R = earth_radius(ylat)
R=6378137
dlat = abs(deg2rad(gradient(ylat, axis=0)))
dlon = abs(deg2rad(gradient(xlon, axis=1)))
if np.any(dlon>300):
print("issue with jumps in longitude")
sys.exit(1)
dy = dlat * R
dx = dlon * R * cos(deg2rad(ylat))
#print(dy)
#print(dx)
area = dy * dx
xda = DataArray(
area,
dims=["latitude", "longitude"],
coords={"latitude": lat, "longitude": lon},
attrs={
"long_name": "area_per_pixel",
"description": "area per pixel",
"units": "m^2",
},
)
return xda
#obsreg=obs
#modreg=mod
def area_av_old(array, pos_lat, pos_lon, lats, lons, opt="mean"):
# Use the cosine of the converted latitudes as weights for the average
# First find the zonal mean SST by averaging along the latitude circles
dlon=list(lons[1:]-lons[:-1])
dlon.append(lons[-2]-lons[-1])
dlat=list(lats[1:]-lats[:-1])
dlat.append(lats[-2]-lats[-1])
dlon=np.array(dlon)%360
dlat=np.array(dlat)
#extend the lats, and cos over all the dimensions
dim=array.shape
dlon_ext=np.swapaxes(extend_table(dlon, np.delete(dim, pos_lon)), len(dim)-1, pos_lon)
dlat_ext=np.swapaxes(extend_table(dlat, np.delete(dim, pos_lat)), len(dim)-1, pos_lat)
coslat_ext=np.swapaxes(extend_table(np.cos(lats*math.pi/180), np.delete(dim, pos_lat)), len(dim)-1, pos_lat)
#create a weighted array
weights=ma.array(dlon_ext*dlat_ext*coslat_ext, mask=array.mask)
#print weights
#make the weighted sum
if opt=="mean":
sumweigth=np.ma.sum(np.ma.sum(weights, axis=pos_lon),pos_lat)
array_av = np.ma.sum(np.ma.sum(weights*array, axis=pos_lon),pos_lat)/sumweigth
if opt=="sum":
array_av = np.ma.sum(np.ma.sum(weights*array, axis=pos_lon),pos_lat)
return(array_av)
def createdatelst(sdate1, sdate2, smonlstint):
sdatelst=[]
sdate=sdate1
while sdate<sdate2:
sdatelst.append([sdate+relativedelta(months=+(mon-1)) for mon in smonlstint])
sdate=sdate+relativedelta(months=+12)
sdatelst=np.ndarray.flatten(np.array(sdatelst))
return(sdatelst)
def extend_table(array, dims_expend):
array_ext=array
dims_expend=list(dims_expend)
dims_expend.reverse()
for dim in dims_expend:
array_ext=np.expand_dims(array_ext, axis=0).repeat(dim, axis=0)
return(array_ext)
def getvarlat(varf):
for varlat in ["Y", "lat", "latitude", "nav_lat"]:
if varlat in varf.variables.keys():
return varlat
def getvarlon(varf):
for varlat in ["X", "lon", "longitude", "nav_lon"]:
if varlat in varf.variables.keys():
return varlat
def getvarmask(varf):
for varmask in ["LSM", "land"]:
if varmask in varf.variables.keys():
return varmask
def getvarens(varf):
for varens in ["ensemble", "ensembles", "M", "realization"]: #, "lev", "height"]:
if varens in varf.variables.keys():
return varens
def getdimens(varf, varname):
for varens in ["ensemble", "ensembles", "M"]: #, "lev", "height"]:
if varens in varf.variables[varname].dimensions:
return varens
def getdimlon(varf, varname):
for varlon in ["x", "lon"]:
if varlon in varf.variables[varname].dimensions:
return varlon
def getdimlat(varf, varname):
for varlat in ["y", "lat"]:
if varlat in varf.variables[varname].dimensions:
return varlat
def read_mask(url, lat_bnds, lon_bnds, mask):
#url="/esarchive/exp/ecearth/constant/land_sea_mask_512x256.nc"
varf = netCDF4.Dataset(url)
lat_bnds=np.array(lat_bnds)
lon_bnds=np.array(lon_bnds)
varlat=getvarlat(varf)
varlon=getvarlon(varf)
maskvar=getvarmask(varf)
#print maskvar
#define subset
lats = varf.variables[varlat][:]
lons = varf.variables[varlon][:]
#print(lats)
lat1D, lon1D, lat_inds, lon_inds = lonlat_index(lats, lons, lat_bnds, lon_bnds)
#print lat_inds
#print lon_inds
#print lon_inds[0][0],(lon_inds[0][-1]+1)
if len(lon_inds)==2:
#print varf.variables[maskvar].shape
#print lat_inds[0],(lat_inds[-1]+1),lon_inds[0][0],(lon_inds[0][-1]+1)
lsmaskW=varf.variables[maskvar][lat_inds[0]:(lat_inds[-1]+1),lon_inds[0][0]:(lon_inds[0][-1]+1)]
lsmaskE=varf.variables[maskvar][lat_inds[0]:(lat_inds[-1]+1),lon_inds[1][0]:(lon_inds[1][-1]+1)]
lsmask=np.ma.concatenate((lsmaskW, lsmaskE), axis=1)
lons_regW=lons[lon_inds[0]]
lons_regE=lons[lon_inds[1]]
lons_reg=np.ma.concatenate((lons_regW, lons_regE), axis=0)
else:
lsmask = varf.variables[maskvar][lat_inds[0]:(lat_inds[-1]+1),lon_inds[0][0]:(lon_inds[0][-1]+1)]
lons_reg=lons[lon_inds[0]]
lats_reg=lats[lat_inds]
varf.close()
#reverse latitude if needed
if lats[0]<0:
lats=lats[::-1]
lsmak=lsmask[::-1,:]
if mask=="oce":
lsmask = 1 - lsmask
elif mask=="all":
lsmask=lsmask*0+1
elif mask!="land":
print("mask value can only be oce, land or all")
#return(1)
return(lsmask, lats_reg, lons_reg)
def ReadMMMF(modlst, varname, sdatelst, nmon, lat_bnds, lon_bnds, mask, printurl=False, interp = False, firstlead = 0):
nmod=len(modlst)
nsdate=len(sdatelst)
nmembmax=60
varMM=np.zeros((nmod, nsdate, nmembmax, nmon))+1e20
for imod in range(nmod):
mod=modlst[imod]
print(mod)
if ("chfp" in mod)&(varname=="tos"):
varnameaux="ts"
else:
varnameaux=varname
varmod, lat, lon = Readfor(mod, varnameaux, sdatelst, nmon, lat_bnds, lon_bnds, True, mask, printurl=False, interp = interp)
nmemb=varmod.shape[2]
varMM[imod,:,:nmemb,:]=varmod
varMM=ma.array(varMM, mask=varMM>1e19)
return(varMM)
def ReadData(varname, modlst, sdatelst, nmon, lat_bnds, lon_bnds, mask, interp = False):
dictobs = {"prec":ReadGPCP2Opendab, "sst":ReadERSSTOpendab, "tos":ReadERSSTOpendab, "uas":ReadERAINTOpendab}
funcobs = dictobs.get(varname)
obs = funcobs(sdatelst, nmon, np.array(lat_bnds), np.array(lon_bnds), True, mask="oce", interp = interp)
MM = ReadMMBSC(modlst,varname, sdatelst, nmon, lat_bnds, lon_bnds , True, mask="oce", interp = interp)
#print(MM.shape)
MM.shape=(MM.shape[0], MM.shape[1]/nstartmon, nstartmon, MM.shape[2], MM.shape[3])
#MM=np.swapaxes(MM,3,4)
#print(MM.shape)
obs.shape=(obs.shape[0]/nstartmon, nstartmon, obs.shape[1])
return(MM, obs)
def extract_array(varf, varname, ntimesteps, lon_bnds, lat_bnds, start_time = 0, level="all"):
"""
varf : np.array // tensors containing variables
varname : string // name of the variable we want to extract
ntimesteps : int // number of timesteps we want to extract (days for diary data, month for monthly data etc.)
lon_bnds : int list of lenght 2 [a,b] // 0<=a<b<360
lat_bnds : int list of lenght 2 [a,b] // -90<=a<b<90
start_time : int // time step where we want to start the extraction
level :
"""
#print('level : ', level)
varfvar=varf.variables[varname]
varlat=getvarlat(varf)
varlon=getvarlon(varf)
lats = varf.variables[varlat][:]
lons = varf.variables[varlon][:]
#print lons[0]
#lat_inds = np.where((lats >= lat_bnds[0]) & (lats <= lat_bnds[1]))[0]
#lon_inds = lon_index(lons, lon_bnds )
#print('entering lonlat_index with lons : ', lons)
lat1D, lon1D, lat_inds, lon_inds = lonlat_index(lats, lons, lat_bnds, lon_bnds)
#print
#print(varf.variables[varname])
try:
unit=varf.variables[varname].units
except:
defaultdic={"tos":"K","ts":"K", "sst":"K", "tauuo":"N m**-2", "tauu":"N m**-2"}
unit=defaultdic.get(varname)
if unit != None:
print("warning: unit not found in the file, set to default: "+unit)
else:
print("warning: unit not found in the file, cannot set to default.")
#print(unit)
offsetdic={"Celsius_scale":0, "K":-273.15, "mm/day":0, "m s-1":0, "m s**-1":0, "m/s":0,
"Kelvin_scale":-273.15, "N m**-2 s":0, "degC":0, "N m**-2":0, "N/m2":0,
"m s**-1":0, "m/s":0, "m":0, "Pa":0}
scaledic={"Celsius_scale":1, "K":1, "mm/day":1,
"Kelvin_scale":1, "N m**-2 s":1./21600, "degC":1, "N m**-2":1, "N/m2":1,
"m s**-1":86400*1000, "m/s":86400*1000,"m s-1":86400*1000, "m":1000, "Pa":1./100}
if varname in ["uas", "vas"]:
scaledic={"m s-1":1,"m s**-1":1, "m/s":1, "m s**-1":1}
offset = offsetdic.get(unit)
scale=scaledic.get(unit)
if scale==None:
scale=1
if offset==None:
offset=0
#print(scale, offset)
ndim=len(varf.variables[varname].shape)
#print(varf.variables[varname].shape)
#if str(varf.variables[varname].dimensions[1])==getdimlat(varf, varname):
# varfvar=np.swapaxes(vararray,1,2)
#print varfvar.shape
#print "lon inds", lon_inds
#print len(lon_inds)
if len(lon_inds)==2:
if ndim==5:
if level!="all":
vararrayW=varfvar[start_time:ntimesteps+start_time,:,level,lat_inds[0]:(lat_inds[-1]+1),lon_inds[0][0]:(lon_inds[0][-1]+1)]
vararrayE=varfvar[start_time:ntimesteps+start_time,:,level,lat_inds[0]:(lat_inds[-1]+1),lon_inds[1][0]:(lon_inds[1][-1]+1)]
#print unit,scaledic.get(unit),offsetdic.get(unit)
vararray=np.ma.concatenate((vararrayW, vararrayE), axis=3)*scale+offset
else:
vararrayW=varfvar[start_time:ntimesteps+start_time,:,:,lat_inds[0]:(lat_inds[-1]+1),lon_inds[0][0]:(lon_inds[0][-1]+1)]
vararrayE=varfvar[start_time:ntimesteps+start_time,:,:,lat_inds[0]:(lat_inds[-1]+1),lon_inds[1][0]:(lon_inds[1][-1]+1)]
#print unit,scaledic.get(unit),offsetdic.get(unit)
vararray=np.ma.concatenate((vararrayW, vararrayE), axis=4)*scale+offset
elif ndim==4:
if level!="all":
vararrayW=varfvar[start_time:ntimesteps+start_time,level,lat_inds[0]:(lat_inds[-1]+1),lon_inds[0][0]:(lon_inds[0][-1]+1)]
vararrayE=varfvar[start_time:ntimesteps+start_time,level,lat_inds[0]:(lat_inds[-1]+1),lon_inds[1][0]:(lon_inds[1][-1]+1)]
#print unit,scaledic.get(unit),offsetdic.get(unit)
vararray=np.ma.concatenate((vararrayW, vararrayE), axis=2)*scale+offset
else:
vararrayW=varfvar[start_time:ntimesteps+start_time,:,lat_inds[0]:(lat_inds[-1]+1),lon_inds[0][0]:(lon_inds[0][-1]+1)]
vararrayE=varfvar[start_time:ntimesteps+start_time,:,lat_inds[0]:(lat_inds[-1]+1),lon_inds[1][0]:(lon_inds[1][-1]+1)]
#print unit,scaledic.get(unit),offsetdic.get(unit)
vararray=np.ma.concatenate((vararrayW, vararrayE), axis=3)*scale+offset
elif ndim==3:
vararrayW=varfvar[start_time:ntimesteps+start_time,lat_inds[0]:(lat_inds[-1]+1),lon_inds[0][0]:(lon_inds[0][-1]+1)]
vararrayE=varfvar[start_time:ntimesteps+start_time,lat_inds[0]:(lat_inds[-1]+1),lon_inds[1][0]:(lon_inds[1][-1]+1)]
vararray=np.ma.concatenate((vararrayW, vararrayE), axis=2)*scale+offset
if len(lons.shape)==1:
lons_regW=lons[lon_inds[0]]
lons_regE=lons[lon_inds[1]]
lons_reg=np.ma.concatenate((lons_regW, lons_regE), axis=0)
lats_reg=lats[lat_inds]
elif len(lons.shape)==2:
lonsW=lons[lat_inds[0]:(lat_inds[-1]+1),lon_inds[0][0]:(lon_inds[0][-1]+1)]
lonsE=lons[lat_inds[0]:(lat_inds[-1]+1),lon_inds[1][0]:(lon_inds[1][-1]+1)]
lons_reg=np.ma.concatenate((lonsW, lonsE), axis=1)
latsW=lats[lat_inds[0]:(lat_inds[-1]+1),lon_inds[0][0]:(lon_inds[0][-1]+1)]
latsE=lats[lat_inds[0]:(lat_inds[-1]+1),lon_inds[1][0]:(lon_inds[1][-1]+1)]
#print("I am here")
#print(latsW.shape, latsE.shape)
lats_reg=np.ma.concatenate((latsW, latsE), axis=1)
#print(lats_reg.shape)
else:
#print(lon_inds[0])
if ndim==5:
if level!="all":
vararray=varfvar[start_time:ntimesteps+start_time,:,level,lat_inds[0]:(lat_inds[-1]+1),
lon_inds[0][0]:(lon_inds[0][-1]+1)]*scale+offset
else:
vararray=varfvar[start_time:ntimesteps+start_time,:,:,lat_inds[0]:(lat_inds[-1]+1),
lon_inds[0][0]:(lon_inds[0][-1]+1)]*scale+offset
if ndim==4:
if level!="all":
#print(varfvar.shape)
#print(lon_inds,lat_inds)
#print([ntimesteps,level,lat_inds[0],(lat_inds[-1]+1),lon_inds[0][0],(lon_inds[0][-1]+1)])
vararray=varfvar[start_time:ntimesteps+start_time,level,lat_inds[0]:(lat_inds[-1]+1),lon_inds[0][0]:(lon_inds[0][-1]+1)]*scale+offset
else:
print(lon_inds,lat_inds)
vararray=varfvar[start_time:ntimesteps+start_time,:,lat_inds[0]:(lat_inds[-1]+1),lon_inds[0][0]:(lon_inds[0][-1]+1)]*scale+offset
elif ndim==3:
vararray=varfvar[start_time:ntimesteps+start_time,lat_inds[0]:(lat_inds[-1]+1),lon_inds[0][0]:(lon_inds[0][-1]+1)]*scale+offset
#print lons9.44473297e+21
if len(lons.shape)==1:
#print("I am here")
#print(len(lons.shape))
lons_reg=lons[lon_inds[0]]
lats_reg=lats[lat_inds]
elif len(lons.shape)==2:
lats_reg=lats[lat_inds[0]:(lat_inds[-1]+1),lon_inds[0][0]:(lon_inds[0][-1]+1)]
lons_reg=lons[lat_inds[0]:(lat_inds[-1]+1),lon_inds[0][0]:(lon_inds[0][-1]+1)]
#print('vararray shape : ',vararray.shape)
return(vararray, lats_reg, lons_reg)
def geturllistBSC(urlbase,forcastname,varname,dateformat):
urllist=[]
#if urlbase=="":from pathlib import Path
urlbase='/cnrm/pastel/USERS/prodhommec/NO_SAVE/'+forcastname+"/"
urllist=glob(urlbase+varname+'*'+dateformat+"*")
print(urlbase+varname+'*'+dateformat+"*")
if len(urllist)==0:
urllist=glob(urlbase+varname+'*'+dateformat+"*")
if len(urllist)==0:
print("no files found in directory: "+ urlbase)
urllist.sort()
return(urllist)
def ReadMFfor(forcastname, varname, sdatelst, nmon, lat_bnds, lon_bnds, areaav, mask, urlbase="", printurl=False, interp=False, grid="r360x180", level="all"):
nmod=1
imod=0
#read data gridto read the appropriate mask
dateformat0='{0.year:4d}{0.month:02d}'.format(sdatelst[0])
#sdatelst[0].strftime("%Y%m")
#urlbase='http://earth.bsc.es/thredds/dodsC/exp/'+forcastname+'/monthly_mean/'
urllist=geturllistBSC(urlbase,forcastname,varname,dateformat0)
if (varname=="tauu")&(len(urllist)==0):
varname="tauuo"
urllist=geturllistBSC(urlbase,forcastname,varname,dateformat0)
#print urlbase
url0=urllist[0]
if interp:
url0=cdo.remapbil(grid, input="-selvar,"+varname+" "+url0)
print(url0)
varf0 = netCDF4.Dataset(url0)
varlat=getvarlat(varf0)
varlon=getvarlon(varf0)
varens=getvarens(varf0)
#print varf0.variables.keys()
nlat = varf0.variables[varlat].shape[0]
nlon = varf0.variables[varlon].shape
#print nlat,nlon
if len(nlon)==2:
nlon=nlon[1]
else:
nlon=nlon[0]
try:
nmembmax = varf0.variables[varens].shape[0]
except:
nmembmax = 20
#print nmembmax
#read a test array to find if correponding to the mask
arraytest,lats_reg, lons_reg=extract_array(varf0, varname, nmon, lon_bnds, lat_bnds, level=level)
varf0.close()
#print nlon, nlat
nsdates=len(sdatelst)
#read land sea mask and define size of the matrix
dims_expend=[nmod, nsdates, nmembmax, nmon]
#maskurl="/esarchive/exp/ecearth/constant/land_sea_mask_%ix%i.nc"%(nlon, nlat)
#print(maskurl)
#lsmask, lats_reg_mask, lons_reg_mask=read_mask(maskurl, lat_bnds, lon_bnds, mask)
if len(arraytest.shape)==3:
nlat, nlon = arraytest[0,:,:].shape
# lsmask=(arraytest[0,:,:]!=1e20)*1
#print lsmask
# print "warning: size of the mask different of size of the array no mask is applied"
elif len(arraytest.shape)==4:
nlat, nlon= arraytest[0,0,:,:].shape
# if (lsmask.shape)!=arraytest[0,0,:,:].shape:
# lsmask=(arraytest[0,0,:,:]!=1e20)*1
# print "warning: size of the mask different of size of the array no mask is applied"
#lsmaskMM=extend_table(lsmask, dims_expend)
lsmaskMM=ma.zeros((nmod, nsdates, nmembmax, nmon, nlat, nlon))+1
varMM=ma.zeros((nmod, nsdates, nmembmax, nmon, nlat, nlon))+1e20
for idate in range(nsdates):
sdate=sdatelst[idate]
#dateformat=sdate.strftime("%Y%m")
dateformat='{0.year:4d}{0.month:02d}'.format(sdate)
#url=url0.replace(dateformat0, dateformat)
#print(urlbase)
#print(dateformat)
urllist=geturllistBSC(urlbase,forcastname,varname,dateformat)
#print(urllist)
#print(urllist)
#loop over members, needed for unaggregated
for imemb,url in enumerate(urllist):
if printurl:
print(url)
if interp:
url=cdo.remapbil(grid, input=url)
varf = netCDF4.Dataset(url)
vararray,lats_reg, lons_reg = extract_array(varf, varname, nmon, lon_bnds, lat_bnds, level=level)
#print lats_reg
#print lons_reg
#print urllist
if len(urllist)>1:
#print url
#print varMM.shape
#print vararray.shape
#print imemb
vararray=vararray.squeeze()
if len(vararray.shape)==2:
varMM[imod,idate,imemb,:,:]=vararray
elif len(vararray.shape)==3:
varMM[imod,idate,imemb,:,:,:]=vararray
if len(urllist)==1:
#print varf.variables[varname].dimensions
#print getdimens(varf, varname)
#print str(varf.variables[varname].dimensions[1])==getdimens(varf, varname)
if str(varf.variables[varname].dimensions[1])==getdimens(varf, varname):
vararray=np.swapaxes(vararray,0,1)
nmembidate=vararray.shape[0]
if nmembidate!=nmembmax:
print("WARNING: number of member different for start date: "+dateformat)
print("%i members instead of %i"%(nmembidate,nmembmax))
nmembidate=min(nmembidate,nmembmax)
#print varMM.shape, vararray.shape
varMM[imod,idate,:nmembidate,:,:]=vararray[:nmembidate,:,:]
varMM.mask=1-lsmaskMM
#print lsmaskMM
if(areaav):
varMM=area_av(varMM, 4,5, lats_reg, lons_reg)
varMM.mask=varMM>1e19
#print(varMM.shape)
return(varMM,lats_reg, lons_reg)
def ReadObs(varname, sdatelst, nmon, lat_bnds, lon_bnds, areaav, path, mask="oce", interp = False, grid="r360x180"):
"""
"""
a=(glob(path))
a.sort()
url=cdo.mergetime(input=" ".join(a))
if interp:
url=cdo.remapbil(grid, input=url)
print(url)
varf = netCDF4.Dataset(url)
varlat=getvarlat(varf)
varlon=getvarlon(varf)
lats = varf.variables[varlat][:]
lons = varf.variables[varlon][:]
lat_inds = np.where((lats > lat_bnds[0]) & (lats < lat_bnds[1]))[0]
lon_inds = lon_index(lons, lon_bnds)
#contruct index list corresponding to the forecast startdates
tname = "time"
nctime = varf.variables[tname][:] # get values
t_unit = varf.variables[tname].units # get unit "days since 1950-01-01T00:00:00Z"
t_cal = varf.variables[tname].calendar
time = num2date(nctime,units = t_unit,calendar = t_cal)
#print time
forcastime=np.ndarray.flatten(np.transpose(np.array([sdatelst+relativedelta(months=m) for m in range(nmon)])))
#print [s for s in list(forcastime)]
#print forcastime
s = forcastime[0]
time = np.array([date(t.year, t.month, 1) for t in time])
#print time
forcastimeindex=np.array([np.where(time==date(s.year, s.month, 1))[0][0] for s in list(forcastime)])
sdmin=forcastimeindex.min()
sdmax=forcastimeindex.max()+1
#download data subset
#in case selection is over greenwitch selet 2subsets
if len(lon_inds)==2:
vararrayW=varf.variables[varname][sdmin:sdmax,lat_inds,lon_inds[0]][forcastimeindex-sdmin,:,:]
vararrayE=varf.variables[varname][sdmin:sdmax,lat_inds,lon_inds[1]][forcastimeindex-sdmin,:,:]
varobs=np.ma.concatenate((vararrayW, vararrayE), axis=2)
lons_regW=lons[lon_inds[0]]
lons_regE=lons[lon_inds[1]]
lons_reg=np.ma.concatenate((lons_regW, lons_regE), axis=0)
else:
varobs=varf.variables[varname][sdmin:sdmax,lat_inds,lon_inds[0]][forcastimeindex-sdmin,:,:]
lons_reg=lons[lon_inds[0]]
varf.close()
lats_reg=lats[lat_inds]
varobs.shape=(len(sdatelst), nmon, varobs.shape[1], varobs.shape[2])
varobs=ma.array(varobs, mask=varobs>1e20)
if(areaav):
varobs=area_av(varobs, 2, 3, lats_reg, lons_reg)
return(varobs, lats_reg, lons_reg)