-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
75 lines (62 loc) · 2.22 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import faulthandler
faulthandler.enable()
from pytorch_lightning.loggers import WandbLogger
# Standard libraries
import wandb
from agents.BaseTrainer import BaseTrainer
from config.hparams import Parameters
from utils.agent_utils import parse_params
def main():
parameters = Parameters.parse()
# initialize wandb instance
wdb_config = parse_params(parameters)
tags = [
parameters.hparams.MODE,
parameters.network_param.network_name,
parameters.data_param.dataset_name,
f"patch_size: {parameters.data_param.patch_size}",
f"Backbone: {parameters.network_param.feature_extractor_name}",
f"Level: {parameters.data_param.level}",
f"Perc. Blank: {parameters.data_param.percentage_blank}",
]
if parameters.hparams.MODE == "Segmentation":
tags += [f"provider: {parameters.network_param.data_provider}"]
elif parameters.hparams.MODE == "Classification":
tags += [f"nb_sample: {parameters.data_param.nb_samples}"]
else:
tags += [f"nb_sample: {parameters.data_param.nb_samples}"]
if parameters.hparams.train:
wandb_run = wandb.init(
config=wdb_config,
project=parameters.hparams.wandb_project,
entity=parameters.hparams.wandb_entity,
allow_val_change=True,
job_type="train",
tags=tags,
)
wandb_logger = WandbLogger(
config=wdb_config,
project=parameters.hparams.wandb_project,
entity=parameters.hparams.wandb_entity,
allow_val_change=True,
)
agent = BaseTrainer(parameters, wandb_logger)
agent.run()
else:
wandb_run = wandb.init(
config=wdb_config,
project=parameters.hparams.wandb_project,
entity=parameters.hparams.wandb_entity,
allow_val_change=True,
job_type="test",
)
wandb_logger = WandbLogger(
config=wdb_config,
project=parameters.hparams.wandb_project,
entity=parameters.hparams.wandb_entity,
allow_val_change=True,
)
agent = BaseTrainer(parameters, wandb_logger)
agent.predict()
if __name__ == "__main__":
main()