Skip to content

Commit

Permalink
For broadcast, added support for distinct dimensions for both the
Browse files Browse the repository at this point in the history
inputs. Also, added support for processing dimension size more than 5.

Signed-off-by: cmadhira@cadence.com <mckala@invecas.com>
  • Loading branch information
cmadhira@cadence.com committed Nov 27, 2024
1 parent 92b58ef commit 14d98fd
Show file tree
Hide file tree
Showing 2 changed files with 66 additions and 30 deletions.
48 changes: 33 additions & 15 deletions backends/cadence/fusion_g3/operators/op_add.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -76,27 +76,45 @@ Tensor& add_out(
int inp2_shape[kTensorDimensionLimit];
int out_shape[kTensorDimensionLimit];

/* input shapes and output shapes */
for (auto i = 0; i < a_size.size(); i++) {
inp1_shape[i] = a_size[i];
}

for (auto i = 0; i < b_size.size(); i++) {
inp2_shape[i] = b_size[i];
}

for (auto i = 0; i < out_size.size(); i++) {
out_shape[i] = out_size[i];
}

/*find broadcast*/
const bool a_is_broadcasted = !out.sizes().equals(a.sizes());
const bool b_is_broadcasted = !out.sizes().equals(b.sizes());
const bool broadcast = (a_is_broadcasted || b_is_broadcasted);

int max_dim = a.dim() > b.dim() ? a.dim() : b.dim();
max_dim = out.dim() > max_dim ? out.dim() : max_dim;

if (compute_type == ScalarType::Int) {
bool optimized = 1;

if ((a.dim() == 0) || (b.dim() == 0)) {
optimized = 0;
}

if ((broadcast == 1) && (max_dim > kTensorDimensionLimit)) {
optimized = 0;
}

for (int i = 0; i < max_dim; i++) {
out_shape[i] = 1;
inp1_shape[i] = 1;
inp2_shape[i] = 1;
}

int offset_out = max_dim - out.dim();
int offset_inp1 = max_dim - a.dim();
int offset_inp2 = max_dim - b.dim();

for (int i = 0; i < out.dim(); i++) {
out_shape[i + offset_out] = out.size(i);
}
for (int i = 0; i < a.dim(); i++) {
inp1_shape[i + offset_inp1] = a.size(i);
}
for (int i = 0; i < b.dim(); i++) {
inp2_shape[i + offset_inp2] = b.size(i);
}

if ((compute_type == ScalarType::Int) && (optimized)){
const int* const inp1_data = a.const_data_ptr<int>();
const int* const inp2_data = b.const_data_ptr<int>();
int* const out_data = out.mutable_data_ptr<int>();
Expand All @@ -117,7 +135,7 @@ Tensor& add_out(
xa_nn_elm_add_32x32_32(
out_data, inp1_data, inp2_data, alpha_val, out.numel());
}
} else if (compute_type == ScalarType::Float) {
} else if ((compute_type == ScalarType::Float) && (optimized)) {
const float* const inp1_data = a.const_data_ptr<float>();
const float* const inp2_data = b.const_data_ptr<float>();
float* const out_data = out.mutable_data_ptr<float>();
Expand Down
48 changes: 33 additions & 15 deletions backends/cadence/fusion_g3/operators/op_mul.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -68,27 +68,45 @@ Tensor& mul_out(
int inp2_shape[kTensorDimensionLimit];
int out_shape[kTensorDimensionLimit];

/* input shapes and output shapes */
for (auto i = 0; i < a_size.size(); i++) {
inp1_shape[i] = a_size[i];
}

for (auto i = 0; i < b_size.size(); i++) {
inp2_shape[i] = b_size[i];
}

for (auto i = 0; i < out_size.size(); i++) {
out_shape[i] = out_size[i];
}

/*find broadcast*/
const bool a_is_broadcasted = !out.sizes().equals(a.sizes());
const bool b_is_broadcasted = !out.sizes().equals(b.sizes());
const bool broadcast = (a_is_broadcasted || b_is_broadcasted);

int max_dim = a.dim() > b.dim() ? a.dim() : b.dim();
max_dim = out.dim() > max_dim ? out.dim() : max_dim;

if (compute_type == ScalarType::Int) {
bool optimized = 1;

if ((a.dim() == 0) || (b.dim() == 0)) {
optimized = 0;
}

if ((broadcast == 1) && (max_dim > kTensorDimensionLimit)) {
optimized = 0;
}

for (int i = 0; i < max_dim; i++) {
out_shape[i] = 1;
inp1_shape[i] = 1;
inp2_shape[i] = 1;
}

int offset_out = max_dim - out.dim();
int offset_inp1 = max_dim - a.dim();
int offset_inp2 = max_dim - b.dim();

for (int i = 0; i < out.dim(); i++) {
out_shape[i + offset_out] = out.size(i);
}
for (int i = 0; i < a.dim(); i++) {
inp1_shape[i + offset_inp1] = a.size(i);
}
for (int i = 0; i < b.dim(); i++) {
inp2_shape[i + offset_inp2] = b.size(i);
}

if ((compute_type == ScalarType::Int) && (optimized)) {
const int* const inp1_data = a.const_data_ptr<int>();
const int* const inp2_data = b.const_data_ptr<int>();
int* const out_data = out.mutable_data_ptr<int>();
Expand All @@ -105,7 +123,7 @@ Tensor& mul_out(
} else {
xa_nn_elm_mul_32x32_32(out_data, inp1_data, inp2_data, out.numel());
}
} else if (compute_type == ScalarType::Float) {
} else if ((compute_type == ScalarType::Float) && (optimized)) {
const float* const inp1_data = a.const_data_ptr<float>();
const float* const inp2_data = b.const_data_ptr<float>();
float* const out_data = out.mutable_data_ptr<float>();
Expand Down

0 comments on commit 14d98fd

Please sign in to comment.