-
Notifications
You must be signed in to change notification settings - Fork 1
/
CTimeAdaptiveHist.cpp
160 lines (140 loc) · 4.49 KB
/
CTimeAdaptiveHist.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#include "CTimeAdaptiveHist.h"
#define BINS_PER_DAY 1440 //the number of minutes of a day
#define MEASURE_DEF_THRES 100
using namespace std;
CTimeAdaptiveHist::CTimeAdaptiveHist(int idd)
{
id = idd;
firstTime = -1;
lastTime = -1;
measurements = 0;
maxPeriod = 0;
numElements = 0;
type = TT_ADAPTIVE;
}
void CTimeAdaptiveHist::init(int imaxPeriod,int elements,int numActivities)
{
maxPeriod = imaxPeriod;
numElements = BINS_PER_DAY;
def_sample_threshold=elements;
predictHistogram = new float[numElements];
storedHistogram = new float[numElements];
measurementHistogram = new uint32_t[numElements];
for (int i=0;i<numElements;i++)
{
measurementHistogram[i]=0;
predictHistogram[i] = storedHistogram[i] = 0.5;
}
}
CTimeAdaptiveHist::~CTimeAdaptiveHist()
{
delete[] predictHistogram;
delete[] storedHistogram;
delete[] measurementHistogram;
}
// adds new state observations at given times
int CTimeAdaptiveHist::add(uint32_t time,float state)
{
if (measurements == 0) firstTime = time;
lastTime = time;
storedHistogram[((time%maxPeriod)*numElements/maxPeriod)%numElements] += state;
measurementHistogram[((time%maxPeriod)*numElements/maxPeriod)%numElements]++;
measurements++;
return 0;
}
/*not required in incremental version*/
void CTimeAdaptiveHist::update(int modelOrder,unsigned int* times,float* signal,int length)
{
for (int i=0;i<numElements;i++) predictHistogram[i] = storedHistogram[i];
}
/*text representation of the fremen model*/
void CTimeAdaptiveHist::print(bool verbose)
{
std::cout << "Model " << id << " Size: " << measurements << " ";
if (verbose){
std::cout << "Bin values: " << std::endl;
for (int i = 0;i<numElements;i++) std::cout << storedHistogram[i] << " ";
}
std::cout << std::endl;
}
float CTimeAdaptiveHist::estimate(uint32_t time)
{
float estimate = storedHistogram[((time%maxPeriod)*numElements/maxPeriod)%numElements];
float saturation = 0.001;
if (estimate > 1.0-saturation) estimate = 1.0-saturation;
if (estimate < 0.0+saturation) estimate = 0.0+saturation;
return estimate;
}
float CTimeAdaptiveHist::predict(uint32_t time,uint32_t sample_thres)
{
int center=((time%maxPeriod)*numElements/maxPeriod)%numElements;
uint32_t sum=measurementHistogram[center];
float estimate = predictHistogram[center]*(float)measurementHistogram[center];
int i=0;
while(sum<sample_thres)
{
i++;
sum+=measurementHistogram[(center+i)%numElements];
sum+=measurementHistogram[(center-i)%numElements];
estimate+=predictHistogram[(center+i)%numElements]*(float)measurementHistogram[(center+i)%numElements];
estimate+=predictHistogram[(center-i)%numElements]*(float)measurementHistogram[(center-i)%numElements];
}
estimate=estimate/(float)sum;
float saturation = 0.001;
if (estimate > 1.0-saturation) estimate = 1.0-saturation;
if (estimate < 0.0+saturation) estimate = 0.0+saturation;
return estimate;
}
float CTimeAdaptiveHist::predict(uint32_t time)
{
return CTimeAdaptiveHist::predict(time,(uint32_t)def_sample_threshold);
}
int CTimeAdaptiveHist::save(const char* name,bool lossy)
{
FILE* file = fopen(name,"w");
save(file);
fclose(file);
return 0;
}
int CTimeAdaptiveHist::load(const char* name)
{
FILE* file = fopen(name,"r");
load(file);
fclose(file);
return 0;
}
int CTimeAdaptiveHist::save(FILE* file,bool lossy)
{
return -1;
}
int CTimeAdaptiveHist::load(FILE* file)
{
return -1;
}
int CTimeAdaptiveHist::exportToArray(double* array,int maxLen)
{
int pos = 0;
array[pos++] = type;
array[pos++] = numElements;
array[pos++] = id;
array[pos++] = def_sample_threshold;
array[pos++] = measurements;
for (int i = 0;i<numElements && pos < MAX_TEMPORAL_MODEL_SIZE;i++) array[pos++] = storedHistogram[i];
for (int i = 0;i<numElements && pos < MAX_TEMPORAL_MODEL_SIZE;i++) array[pos++] = measurementHistogram[i];
if (pos == MAX_TEMPORAL_MODEL_SIZE) std::cout << "Could not save the model dur to its size" << std::endl;
return pos;
}
int CTimeAdaptiveHist::importFromArray(double* array,int len)
{
int pos = 0;
type = (ETemporalType)array[pos++];
numElements = array[pos++];
if (type != TT_ADAPTIVE) std::cerr << "Error loading the model, type mismatch." << std::endl;
id = array[pos++];
def_sample_threshold = array[pos++];
measurements = array[pos++];
for (int i = 0;i<numElements && pos < MAX_TEMPORAL_MODEL_SIZE;i++)storedHistogram[i]=array[pos++];
for (int i = 0;i<numElements && pos < MAX_TEMPORAL_MODEL_SIZE;i++)measurementHistogram[i]=array[pos++];
if (pos == MAX_TEMPORAL_MODEL_SIZE) std::cout << "Model was not properly saved before." << std::endl;
return pos;
}