Skip to content

christophmeyer/stylegan2-tf2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Unofficial StyleGAN2 implementation with tensorflow 2.2

This is an unofficial tensorflow 2.2 based re-implementation of the original StyleGAN2 published in:

T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila
Analyzing and Improving the Image Quality of StyleGAN
https://arxiv.org/abs/1912.04958v2

Here are some flowers:

And some GAN-written digits:

The implemented features include:

Features:

  • Weight modulation/demodulation
  • Lazy regularization
  • Label conditioning
  • Skip architecture generator
  • Resnet architecture discriminator
  • Truncation trick
  • Works on both GPU and CPU
  • Docker image is provided

Todo:

  • Style mixing regularization
  • Path length regularization

Data preparation

The networks consume the training data from a tfrecord file. For each record, this contains the raw pixel value of the rectangular images in HWC ordering and potentially a vector of one-hot encoded class labels. The resolution must be a power of two. To generate the training data, specify the resolution in the config file and run:

python preprocess_data.py \
--config_path ./config/flowers.yaml \
--dataset flowers \
--raw_data_path ./data/flowers/jpg \
--data_out_path ./data/flowers

Training

To start the training, run:

python run_training.py \
--config_path ./config/flowers.yaml \
--data_path ./data/flowers/flowers.tfrecords

Generate Fakes

To generate fake images from the checkpoints written during training, run:

python generate_fakes.py \
--config_path ./config/flowers.yaml \
--num_fake_batches 10 \
--checkpoint_dir ./checkpoints/flowers/models \
--generated_images_dir ./generated_images/flowers

This will loop through all checkpoint in the checkpoint_dir and generate a grid of num_fake_batches * batch_size generated images. Use truncation_psi and truncation_cutoff to control the variance of the generated fake images.

Docker

The steps above can be run in docker, using the image cmeyr/stylegan2-tf2:latest. For example:

docker run -d \
--rm \
-v "$PWD/config:/app/config" \
-v "$PWD/logs:/app/logs" \
-v "$PWD/checkpoints:/app/checkpoints" \
-v "$PWD/data:/app/data" \
--name stylegan2_tf2_training \
cmeyr/stylegan2-tf2:latest \
python -u run_training.py \
--config_path ./config/flowers.yaml \
--data_path ./data/flowers/flowers.tfrecords

If you are running on a GPU, please also set the option --runtime=nvidia. You can build the image yourself by running ./build_docker_image.sh.

About

Unofficial StyleGAN2 implementation with Tensorflow 2.2

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published