forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnamedtuple.jl
589 lines (486 loc) · 19.5 KB
/
namedtuple.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
# This file is a part of Julia. License is MIT: https://julialang.org/license
import Core: NamedTuple
"""
NamedTuple
`NamedTuple`s are, as their name suggests, named [`Tuple`](@ref)s. That is, they're a
tuple-like collection of values, where each entry has a unique name, represented as a
[`Symbol`](@ref). Like `Tuple`s, `NamedTuple`s are immutable; neither the names nor the values
can be modified in place after construction.
A named tuple can be created as a tuple literal with keys, e.g. `(a=1, b=2)`,
or as a tuple literal with semicolon after the opening parenthesis, e.g. `(;
a=1, b=2)` (this form also accepts programmatically generated names as
described below), or using a `NamedTuple` type as constructor, e.g.
`NamedTuple{(:a, :b)}((1,2))`.
Accessing the value associated with a name in a named tuple can be done using field
access syntax, e.g. `x.a`, or using [`getindex`](@ref), e.g. `x[:a]` or `x[(:a, :b)]`.
A tuple of the names can be obtained using [`keys`](@ref), and a tuple of the values
can be obtained using [`values`](@ref).
!!! note
Iteration over `NamedTuple`s produces the *values* without the names. (See example
below.) To iterate over the name-value pairs, use the [`pairs`](@ref) function.
The [`@NamedTuple`](@ref) macro can be used for conveniently declaring `NamedTuple` types.
# Examples
```jldoctest
julia> x = (a=1, b=2)
(a = 1, b = 2)
julia> x.a
1
julia> x[:a]
1
julia> x[(:a,)]
(a = 1,)
julia> keys(x)
(:a, :b)
julia> values(x)
(1, 2)
julia> collect(x)
2-element Vector{Int64}:
1
2
julia> collect(pairs(x))
2-element Vector{Pair{Symbol, Int64}}:
:a => 1
:b => 2
```
In a similar fashion as to how one can define keyword arguments programmatically,
a named tuple can be created by giving pairs `name::Symbol => value` after a
semicolon inside a tuple literal. This and the `name=value` syntax can be mixed:
```jldoctest
julia> (; :a => 1, :b => 2, c=3)
(a = 1, b = 2, c = 3)
```
The name-value pairs can also be provided by splatting a named tuple or any
iterator that yields two-value collections holding each a symbol as first
value:
```jldoctest
julia> keys = (:a, :b, :c); values = (1, 2, 3);
julia> NamedTuple{keys}(values)
(a = 1, b = 2, c = 3)
julia> (; (keys .=> values)...)
(a = 1, b = 2, c = 3)
julia> nt1 = (a=1, b=2);
julia> nt2 = (c=3, d=4);
julia> (; nt1..., nt2..., b=20) # the final b overwrites the value from nt1
(a = 1, b = 20, c = 3, d = 4)
julia> (; zip(keys, values)...) # zip yields tuples such as (:a, 1)
(a = 1, b = 2, c = 3)
```
As in keyword arguments, identifiers and dot expressions imply names:
```jldoctest
julia> x = 0
0
julia> t = (; x)
(x = 0,)
julia> (; t.x)
(x = 0,)
```
!!! compat "Julia 1.5"
Implicit names from identifiers and dot expressions are available as of Julia 1.5.
!!! compat "Julia 1.7"
Use of `getindex` methods with multiple `Symbol`s is available as of Julia 1.7.
"""
Core.NamedTuple
@eval function (NT::Type{NamedTuple{names,T}})(args::Tuple) where {names, T <: Tuple}
if length(args) != length(names::Tuple)
throw(ArgumentError("Wrong number of arguments to named tuple constructor."))
end
# Note T(args) might not return something of type T; e.g.
# Tuple{Type{Float64}}((Float64,)) returns a Tuple{DataType}
$(Expr(:splatnew, :NT, :(T(args))))
end
function (NT::Type{NamedTuple{names, T}})(nt::NamedTuple) where {names, T <: Tuple}
if @generated
Expr(:new, :NT,
Any[ :(let Tn = fieldtype(NT, $n),
ntn = getfield(nt, $(QuoteNode(names[n])))
ntn isa Tn ? ntn : convert(Tn, ntn)
end) for n in 1:length(names) ]...)
else
NT(map(Fix1(getfield, nt), names))
end
end
function NamedTuple{names}(nt::NamedTuple) where {names}
if @generated
idx = Int[ fieldindex(nt, names[n]) for n in 1:length(names) ]
types = Tuple{(fieldtype(nt, idx[n]) for n in 1:length(idx))...}
Expr(:new, :(NamedTuple{names, $types}), Any[ :(getfield(nt, $(idx[n]))) for n in 1:length(idx) ]...)
else
length_names = length(names::Tuple)
types = Tuple{(fieldtype(typeof(nt), names[n]) for n in 1:length_names)...}
_new_NamedTuple(NamedTuple{names, types}, map(Fix1(getfield, nt), names))
end
end
(NT::Type{NamedTuple{names, T}})(itr) where {names, T <: Tuple} = NT(T(itr))
(NT::Type{NamedTuple{names}})(itr) where {names} = NT(Tuple(itr))
NamedTuple(itr) = (; itr...)
# Like NamedTuple{names, T} as a constructor, but omits the additional
# `convert` call, when the types are known to match the fields
@eval function _new_NamedTuple(T::Type{NamedTuple{NTN, NTT}} where {NTN, NTT}, args::Tuple)
$(Expr(:splatnew, :T, :args))
end
length(t::NamedTuple) = nfields(t)
iterate(t::NamedTuple, iter=1) = iter > nfields(t) ? nothing : (getfield(t, iter), iter + 1)
rest(t::NamedTuple) = t
@inline rest(t::NamedTuple{names}, i::Int) where {names} = NamedTuple{rest(names,i)}(t)
firstindex(t::NamedTuple) = 1
lastindex(t::NamedTuple) = nfields(t)
getindex(t::NamedTuple, i::Int) = getfield(t, i)
getindex(t::NamedTuple, i::Symbol) = getfield(t, i)
getindex(t::NamedTuple, ::Colon) = t
@inline getindex(t::NamedTuple, idxs::Tuple{Vararg{Symbol}}) = NamedTuple{idxs}(t)
@inline getindex(t::NamedTuple, idxs::AbstractVector{Symbol}) = NamedTuple{Tuple(idxs)}(t)
indexed_iterate(t::NamedTuple, i::Int, state=1) = (getfield(t, i), i+1)
isempty(::NamedTuple{()}) = true
isempty(::NamedTuple) = false
empty(::NamedTuple) = NamedTuple()
prevind(@nospecialize(t::NamedTuple), i::Integer) = Int(i)-1
nextind(@nospecialize(t::NamedTuple), i::Integer) = Int(i)+1
convert(::Type{NT}, nt::NT) where {names, NT<:NamedTuple{names}} = nt
convert(::Type{NT}, nt::NT) where {names, T<:Tuple, NT<:NamedTuple{names,T}} = nt
convert(::Type{NT}, t::Tuple) where {NT<:NamedTuple} = (@inline NT(t))::NT
function convert(::Type{NamedTuple{names,T}}, nt::NamedTuple{names}) where {names,T<:Tuple}
NT = NamedTuple{names,T}
(@inline NT(nt))::NT
end
function convert(::Type{NT}, nt::NamedTuple{names}) where {names, NT<:NamedTuple{names}}
# converting abstract NT to an abstract Tuple type, to a concrete NT1, is not straightforward, so this could just be an error, but we define it anyways
# _tuple_error(NT, nt)
T1 = Tuple{ntuple(i -> fieldtype(NT, i), Val(length(names)))...}
NT1 = NamedTuple{names, T1}
return NT1(T1(nt))::NT1::NT
end
Tuple(nt::NamedTuple) = (nt...,)
(::Type{T})(nt::NamedTuple) where {T <: Tuple} = (t = Tuple(nt); t isa T ? t : convert(T, t)::T)
function show(io::IO, t::NamedTuple)
n = nfields(t)
for i = 1:n
# if field types aren't concrete, show full type
if typeof(getfield(t, i)) !== fieldtype(typeof(t), i)
show(io, typeof(t))
print(io, "(")
show(io, Tuple(t))
print(io, ")")
return
end
end
if n == 0
print(io, "NamedTuple()")
else
typeinfo = get(io, :typeinfo, Any)
print(io, "(")
for i = 1:n
show_sym(io, fieldname(typeof(t), i))
print(io, " = ")
show(IOContext(io, :typeinfo =>
t isa typeinfo <: NamedTuple ? fieldtype(typeinfo, i) : Any),
getfield(t, i))
if n == 1
print(io, ",")
elseif i < n
print(io, ", ")
end
end
print(io, ")")
end
end
eltype(::Type{T}) where T<:NamedTuple = nteltype(T)
nteltype(::Type) = Any
nteltype(::Type{NamedTuple{names,T}} where names) where {T} = eltype(T)
keytype(@nospecialize nt::NamedTuple) = keytype(typeof(nt))
keytype(@nospecialize T::Type{<:NamedTuple}) = Symbol
valtype(@nospecialize nt::NamedTuple) = valtype(typeof(nt))
valtype(@nospecialize T::Type{<:NamedTuple}) = eltype(T)
==(a::NamedTuple{n}, b::NamedTuple{n}) where {n} = Tuple(a) == Tuple(b)
==(a::NamedTuple, b::NamedTuple) = false
isequal(a::NamedTuple{n}, b::NamedTuple{n}) where {n} = isequal(Tuple(a), Tuple(b))
isequal(a::NamedTuple, b::NamedTuple) = false
_nt_names(::NamedTuple{names}) where {names} = names
_nt_names(::Type{T}) where {names,T<:NamedTuple{names}} = names
hash(x::NamedTuple, h::UInt) = xor(objectid(_nt_names(x)), hash(Tuple(x), h))
(<)(a::NamedTuple{n}, b::NamedTuple{n}) where {n} = Tuple(a) < Tuple(b)
isless(a::NamedTuple{n}, b::NamedTuple{n}) where {n} = isless(Tuple(a), Tuple(b))
same_names(::NamedTuple{names}...) where {names} = true
same_names(::NamedTuple...) = false
# NOTE: this method signature makes sure we don't define map(f)
function map(f, nt::NamedTuple{names}, nts::NamedTuple...) where names
if !same_names(nt, nts...)
throw(ArgumentError("Named tuple names do not match."))
end
NamedTuple{names}(map(f, map(Tuple, (nt, nts...))...))
end
filter(f, xs::NamedTuple) = xs[filter(k -> f(xs[k]), keys(xs))]
function merge_names(an::Tuple{Vararg{Symbol}}, bn::Tuple{Vararg{Symbol}})
@nospecialize
@_total_meta
names = Symbol[an...]
for n in bn
if !sym_in(n, an)
push!(names, n)
end
end
(names...,)
end
function merge_types(names::Tuple{Vararg{Symbol}}, a::Type{<:NamedTuple}, b::Type{<:NamedTuple})
@nospecialize
@_total_meta
bn = _nt_names(b)
return Tuple{Any[ fieldtype(sym_in(names[n], bn) ? b : a, names[n]) for n in 1:length(names) ]...}
end
function merge_fallback(a::NamedTuple, b::NamedTuple,
an::Tuple{Vararg{Symbol}}, bn::Tuple{Vararg{Symbol}})
@nospecialize
@_foldable_meta
names = merge_names(an, bn)
types = merge_types(names, typeof(a), typeof(b))
n = length(names)
A = Memory{Any}(undef, n)
for i=1:n
n = names[i]
A[i] = getfield(sym_in(n, bn) ? b : a, n)
end
_new_NamedTuple(NamedTuple{names, types}, (A...,))
end
# This is `Experimental.@max_methods 4 function merge end`, which is not
# defined at this point in bootstrap.
typeof(function merge end).name.max_methods = UInt8(4)
"""
merge(a::NamedTuple, bs::NamedTuple...)
Construct a new named tuple by merging two or more existing ones, in a left-associative
manner. Merging proceeds left-to-right, between pairs of named tuples, and so the order of fields
present in both the leftmost and rightmost named tuples take the same position as they are found in the
leftmost named tuple. However, values are taken from matching fields in the rightmost named tuple that
contains that field. Fields present in only the rightmost named tuple of a pair are appended at the end.
A fallback is implemented for when only a single named tuple is supplied,
with signature `merge(a::NamedTuple)`.
!!! compat "Julia 1.1"
Merging 3 or more `NamedTuple` requires at least Julia 1.1.
# Examples
```jldoctest
julia> merge((a=1, b=2, c=3), (b=4, d=5))
(a = 1, b = 4, c = 3, d = 5)
```
```jldoctest
julia> merge((a=1, b=2), (b=3, c=(d=1,)), (c=(d=2,),))
(a = 1, b = 3, c = (d = 2,))
```
"""
function merge(a::NamedTuple{an}, b::NamedTuple{bn}) where {an, bn}
if @generated
names = merge_names(an, bn)
types = merge_types(names, a, b)
vals = Any[ :(getfield($(sym_in(names[n], bn) ? :b : :a), $(QuoteNode(names[n])))) for n in 1:length(names) ]
:( _new_NamedTuple(NamedTuple{$names,$types}, ($(vals...),)) )
else
merge_fallback(a, b, an, bn)
end
end
merge(a::NamedTuple, b::NamedTuple{()}) = a
merge(a::NamedTuple{()}, b::NamedTuple{()}) = a
merge(a::NamedTuple{()}, b::NamedTuple) = b
merge(a::NamedTuple, b::Iterators.Pairs{<:Any,<:Any,<:Any,<:NamedTuple}) = merge(a, getfield(b, :data))
merge(a::NamedTuple, b::Iterators.Zip{<:Tuple{Any,Any}}) = merge(a, NamedTuple{Tuple(b.is[1])}(b.is[2]))
merge(a::NamedTuple, b::NamedTuple, cs::NamedTuple...) = merge(merge(a, b), cs...)
merge(a::NamedTuple) = a
"""
merge(a::NamedTuple, iterable)
Interpret an iterable of key-value pairs as a named tuple, and perform a merge.
```jldoctest
julia> merge((a=1, b=2, c=3), [:b=>4, :d=>5])
(a = 1, b = 4, c = 3, d = 5)
```
"""
function merge(a::NamedTuple, itr)
names = Symbol[]
vals = Any[]
inds = IdDict{Symbol,Int}()
for (k, v) in itr
k = k::Symbol
oldind = get(inds, k, 0)
if oldind > 0
vals[oldind] = v
else
push!(names, k)
push!(vals, v)
inds[k] = length(names)
end
end
merge(a, NamedTuple{(names...,)}((vals...,)))
end
keys(nt::NamedTuple{names}) where {names} = names::Tuple{Vararg{Symbol}}
values(nt::NamedTuple) = Tuple(nt)
haskey(nt::NamedTuple, key::Union{Integer, Symbol}) = isdefined(nt, key)
get(nt::NamedTuple, key::Union{Integer, Symbol}, default) = isdefined(nt, key) ? getfield(nt, key) : default
get(f::Callable, nt::NamedTuple, key::Union{Integer, Symbol}) = isdefined(nt, key) ? getfield(nt, key) : f()
tail(t::NamedTuple{names}) where names = NamedTuple{tail(names::Tuple)}(t)
front(t::NamedTuple{names}) where names = NamedTuple{front(names::Tuple)}(t)
reverse(nt::NamedTuple) = NamedTuple{reverse(keys(nt))}(reverse(values(nt)))
function diff_names(an::Tuple{Vararg{Symbol}}, bn::Tuple{Vararg{Symbol}})
@nospecialize
@_total_meta
names = Symbol[]
for n in an
if !sym_in(n, bn)
push!(names, n)
end
end
(names...,)
end
function diff_types(a::NamedTuple, names::Tuple{Vararg{Symbol}})
@nospecialize
@_foldable_meta
return Tuple{Any[ fieldtype(typeof(a), names[n]) for n in 1:length(names) ]...}
end
function diff_fallback(a::NamedTuple, an::Tuple{Vararg{Symbol}}, bn::Tuple{Vararg{Symbol}})
@nospecialize
@_foldable_meta
names = diff_names(an, bn)
isempty(names) && return (;)
types = diff_types(a, names)
n = length(names)
A = Memory{Any}(undef, n)
for i=1:n
n = names[i]
A[i] = getfield(a, n)
end
_new_NamedTuple(NamedTuple{names, types}, (A...,))
end
"""
delete(a::NamedTuple, field::Symbol)
Construct a new named tuple from `a` by removing the named field.
```jldoctest
julia> Base.delete((a=1, b=2, c=3), :a)
(b = 2, c = 3)
julia> Base.delete((a=1, b=2, c=3), :b)
(a = 1, c = 3)
```
"""
@constprop :aggressive function delete(a::NamedTuple{an}, field::Symbol) where {an}
names = diff_names(an, (field,))
NamedTuple{names}(a)
end
"""
structdiff(a::NamedTuple, b::Union{NamedTuple,Type{NamedTuple}})
Construct a copy of named tuple `a`, except with fields that exist in `b` removed.
`b` can be a named tuple, or a type of the form `NamedTuple{field_names}`.
"""
function structdiff(a::NamedTuple{an}, b::Union{NamedTuple{bn}, Type{NamedTuple{bn}}}) where {an, bn}
if @generated
names = diff_names(an, bn)
isempty(names) && return (;) # just a fast pass
idx = Int[ fieldindex(a, names[n]) for n in 1:length(names) ]
types = Tuple{Any[ fieldtype(a, idx[n]) for n in 1:length(idx) ]...}
vals = Any[ :(getfield(a, $(idx[n]))) for n in 1:length(idx) ]
return :( _new_NamedTuple(NamedTuple{$names,$types}, ($(vals...),)) )
else
return diff_fallback(a, an, bn)
end
end
structdiff(a::NamedTuple{an}, b::Union{NamedTuple{an}, Type{NamedTuple{an}}}) where {an} = (;)
"""
setindex(nt::NamedTuple, val, key::Symbol)
Constructs a new `NamedTuple` with the key `key` set to `val`.
If `key` is already in the keys of `nt`, `val` replaces the old value.
```jldoctest
julia> nt = (a = 3,)
(a = 3,)
julia> Base.setindex(nt, 33, :b)
(a = 3, b = 33)
julia> Base.setindex(nt, 4, :a)
(a = 4,)
julia> Base.setindex(nt, "a", :a)
(a = "a",)
```
"""
function setindex(nt::NamedTuple, v, idx::Symbol)
merge(nt, (; idx => v))
end
"""
@NamedTuple{key1::Type1, key2::Type2, ...}
@NamedTuple begin key1::Type1; key2::Type2; ...; end
This macro gives a more convenient syntax for declaring `NamedTuple` types. It returns a `NamedTuple`
type with the given keys and types, equivalent to `NamedTuple{(:key1, :key2, ...), Tuple{Type1,Type2,...}}`.
If the `::Type` declaration is omitted, it is taken to be `Any`. The `begin ... end` form allows the
declarations to be split across multiple lines (similar to a `struct` declaration), but is otherwise
equivalent. The `NamedTuple` macro is used when printing `NamedTuple` types to e.g. the REPL.
For example, the tuple `(a=3.1, b="hello")` has a type `NamedTuple{(:a, :b), Tuple{Float64, String}}`, which
can also be declared via `@NamedTuple` as:
```jldoctest
julia> @NamedTuple{a::Float64, b::String}
@NamedTuple{a::Float64, b::String}
julia> @NamedTuple begin
a::Float64
b::String
end
@NamedTuple{a::Float64, b::String}
```
!!! compat "Julia 1.5"
This macro is available as of Julia 1.5.
"""
macro NamedTuple(ex)
Meta.isexpr(ex, :braces) || Meta.isexpr(ex, :block) ||
throw(ArgumentError("@NamedTuple expects {...} or begin...end"))
decls = filter(e -> !(e isa LineNumberNode), ex.args)
all(e -> e isa Symbol || Meta.isexpr(e, :(::)), decls) ||
throw(ArgumentError("@NamedTuple must contain a sequence of name or name::type expressions"))
vars = [QuoteNode(e isa Symbol ? e : e.args[1]) for e in decls]
types = [esc(e isa Symbol ? :Any : e.args[2]) for e in decls]
return :(NamedTuple{($(vars...),), Tuple{$(types...)}})
end
"""
@Kwargs{key1::Type1, key2::Type2, ...}
This macro gives a convenient way to construct the type representation of keyword arguments
from the same syntax as [`@NamedTuple`](@ref).
For example, when we have a function call like `func([positional arguments]; kw1=1.0, kw2="2")`,
we can use this macro to construct the internal type representation of the keyword arguments
as `@Kwargs{kw1::Float64, kw2::String}`.
The macro syntax is specifically designed to simplify the signature type of a keyword method
when it is printed in the stack trace view.
```julia
julia> @Kwargs{init::Int} # the internal representation of keyword arguments
Base.Pairs{Symbol, Int64, Tuple{Symbol}, @NamedTuple{init::Int64}}
julia> sum("julia"; init=1)
ERROR: MethodError: no method matching +(::Char, ::Char)
The function `+` exists, but no method is defined for this combination of argument types.
Closest candidates are:
+(::Any, ::Any, ::Any, ::Any...)
@ Base operators.jl:585
+(::Integer, ::AbstractChar)
@ Base char.jl:247
+(::T, ::Integer) where T<:AbstractChar
@ Base char.jl:237
Stacktrace:
[1] add_sum(x::Char, y::Char)
@ Base ./reduce.jl:24
[2] BottomRF
@ Base ./reduce.jl:86 [inlined]
[3] _foldl_impl(op::Base.BottomRF{typeof(Base.add_sum)}, init::Int64, itr::String)
@ Base ./reduce.jl:62
[4] foldl_impl(op::Base.BottomRF{typeof(Base.add_sum)}, nt::Int64, itr::String)
@ Base ./reduce.jl:48 [inlined]
[5] mapfoldl_impl(f::typeof(identity), op::typeof(Base.add_sum), nt::Int64, itr::String)
@ Base ./reduce.jl:44 [inlined]
[6] mapfoldl(f::typeof(identity), op::typeof(Base.add_sum), itr::String; init::Int64)
@ Base ./reduce.jl:175 [inlined]
[7] mapreduce(f::typeof(identity), op::typeof(Base.add_sum), itr::String; kw::@Kwargs{init::Int64})
@ Base ./reduce.jl:307 [inlined]
[8] sum(f::typeof(identity), a::String; kw::@Kwargs{init::Int64})
@ Base ./reduce.jl:535 [inlined]
[9] sum(a::String; kw::@Kwargs{init::Int64})
@ Base ./reduce.jl:564 [inlined]
[10] top-level scope
@ REPL[12]:1
```
!!! compat "Julia 1.10"
This macro is available as of Julia 1.10.
"""
macro Kwargs(ex)
return :(let
NT = @NamedTuple $ex
Base.Pairs{keytype(NT),eltype(NT),typeof(NT.parameters[1]),NT}
end)
end
@constprop :aggressive function split_rest(t::NamedTuple{names}, n::Int, st...) where {names}
_check_length_split_rest(length(t), n)
names_front, names_last_n = split_rest(names, n, st...)
return NamedTuple{names_front}(t), NamedTuple{names_last_n}(t)
end